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ABSTRACT 
 
 

 Non-monotonic behavior in combat models is an important topic to those using 

the output of such models as a basis for decision making.  These decisions can be 

complicated by non-monotonic behavior in the combat models.  This paper examines the 

Dewar model which exhibits non-monotonic behavior caused by the chaos inherent in its 

structure.  Previous papers have examined only small subsets of this 18 dimensional 

combat model.  The combinatorial possibilities of main effects and interactions among 

the 18 dimensions are too great to examine en masse.  Consequently, we have three goals.  

First, systematically explore the Dewar model for additional non-monotonic behavior.  

Second, determine the effect of stochastic modeling on the non-monotonic behavior of 

the Dewar model response surface.  Third, we develop a method for measuring non-

monotonicity in the response surface generated by the model.  Latin Hypercube Sampling 

discovers non-monotonicity across broad regions of the model’s phase space, and in 

multiple measures of effectiveness.  Stochastic perturbation of model parameters has a 

dramatic effect on the non-monotonicity of the response surface.  Stochastic perturbation 

can both reduce and exacerbate the non-monotonic behavior of the response surface.  If 

done properly, stochastic modeling can significantly improve the interpretability of the 

response surface. 
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EXECUTIVE SUMMARY 
 

Decision makers, throughout the Department of Defense (DoD), use models and 

simulations (M&S) when choosing between various strategic courses of action, whether 

or not to purchase particular weapons systems, implement programs, terminate existing 

programs, close existing facilities, open new facilities, and so on.  The cost of these 

weapon systems, programs and facilities can run into the billions of dollars, and there is 

always the possibility of lives lost.  Ensuring that these M&S are logically coherent and 

provide results that are consistently valid for the purposes for which they are employed is 

of paramount importance.  To the degree that these M&S cannot be verified and 

validated, decision makers risk making bad decisions.  Bad decisions increase the risk of 

wasting time, money, and resources; they also may put the lives of those affected by 

these decisions at greater risk.   

"For want of a nail...the war was lost," presents a compelling example of chaotic 

behavior on the battlefield.   Had the commander known that victory lay in the possession 

of a nail, he might have won the war.  However, it is an inescapable fact that no matter 

how careful our measurements, the data used in our analyses are subject to errors.  In 

chaotic systems, even if the magnitude of these errors is extremely small, the uncertainty 

associated with the errors, conjoined with sensitivity to initial conditionsa 

characteristic of chaotic systemscreates uncertainty about our knowledge of the system 

in the future.  This uncertainty grows larger as we look farther into the future 

No M&S can capture all the intricacies of the real world.  However, military 

analysts seek to capture the essential aspects of combat in their models.  The hope is that 

the output of the models may tell them something useful regarding alternative courses of 

action, deciding between new weapons systems, and so on.  One of the essential aspects 

of combat may be chaos.  In 1991, Dewar et al. showed that a simple, deterministic 

combat model had a chaotic battle trace.  A battle trace is the record of each side’s force 

level through time.  Dewar et al. showed that this chaotic battle trace caused non-

monotonic behavior in the model.  In a combat model, non-monotonicity can be thought 

of as “capability added to the side of one combatant leading to a less favorable result for 

 xvii



that side.”  Repeating Dewar’s note of caution, the chaotic behavior manifested in a 

combat model may or may not be an accurate reflection of chaos on the battlefield.  

However, a combat model that exhibits chaotic behavior in an appropriate way, seems, on 

an intuitive level, to be more realistic than a model that does not.   

Figure 0.11 shows the non-monotonic output of the original Dewar model.  In this 

two-dimensional graph, initial Red force levels vary from ten to 3500, in increments of 

ten.  Initial Blue force levels vary from ten to 2000, also in increments of ten.  The black  

region in the graph represents those initial force levels that result in a Red win.   Now, 

consider the following two scenarios: 

a.  In the first scenario, Blue forces are fixed at 900 (this constant Blue force level 

is indicated by a red line on the graph), and Red forces vary from ten through 3500.  As 

additional troops are added to the Red force, and other variables are held constant, the 

trend is monotonic.  At an initial force level of about 2800 troops, Red starts to win.  

After that, adding troops to Red’s initial force level results in continued Red wins, just as 

one would expect.   

b.  In the second scenario, suppose that, instead of 900, Blue is fixed at 450, while 

Red varies from 700 to 1800.  Then, the response trend goes from Blue wins to Red wins, 

back and forth many times.  Clearly, the trend is non-monotonic.  This non-monotonic 

trend would seem to make it impossible for a decision maker to decide whether or not 

adding more Red Forces is a good idea. 

Note the broad region of extreme non-monotonicity in Figure 0.1.  Also note that 

large portions of this subspace contain very nice monotonic regions.  If this graph is any 

indication of the subspaces that exist in larger models, then it is easy to see that extreme 

non-monotonicity might go unnoticed, even when it exists.  In larger models, the 

dimensionality of the phase space is incomprehensibly vast.  It is entirely possible that 

these large models are operating in purely monotonic regions.  However, it is also 

possible that they are teetering on the edges of non-monotonic regions like the one 

pictured here. 
                                                 

1 Most of the graphs and tables in this thesis are best viewed in color.  The original version of this 
document is available in PDF format from the Naval Postgraduate school, http://www.nps.navy.mil. 
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Figure 0.1. The Response Surface of the Original Dewar Model. 

 

When a model, used to decide between alternative courses of action, exhibits non-

monotonic behavior, the validity of the model comes into question.  For many years, 

analysts have been plagued by non-monotonicities in their models.   The causes of non-

monotonicities in the output of M&S are usually traceable to the effects of nonlinear 

interactions.  For example, the interaction between reinforcement and attrition in combat 

models is nonlinear.  In the Dewar model, this nonlinear interaction manifests itself as a 

chaotic battle trace.  The battle trace, in turn, causes non-monotonic trends in the 

response surface. Although the Dewar model is quite small relative to many of the 

models currently used by the Department of Defense, it includes many of the same 

processes present in these much larger models.  Thus, it is reasonable to suspect that the 

larger models may also be plagued by chaos and its consequent non-monotonicity.  

Due to the difficulties inherent in the analysis of nonlinear systems and the 

immense number of parameters in these large models, the traditional reaction has been to 

‘fix’ the model until the non-monotonic behavior goes away.  These fixes often attenuate 
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the realism of the model, making the output less useful (Dewar et al.,1991).  Another 

‘solution’ has been to just ignore the non-monotonicities as anomalous: “It’s just a quirk 

of the model.”  However, the nonlinearities causing the non-monotonicity may be an 

essential part of the model.  In this case, the non-monotonicities should not be ignored or 

‘fixed’ so that they go away.  Advances in computing power and developments in chaos 

theory over the last thirty years have made it possible to look at the problem of non-

monotonic behavior from a different perspective.  Perhaps there is a way to retain the 

inherent nonlinear nature of the thing being modeled and still obtain an interpretable 

response surface that can be used to help decision makers decide between competing 

alternatives.   

The dozen previously published papers on the Dewar model examined only small 

subsets of its 18 dimensions.  The combinatorial possibilities of main effects and 

interactions among the 18 dimensions are too great to examine en masse.  There are some 

who would caution against spending time on pragmatically useless models.  However, 

intensive study of the Dewar model has the potential to uncover many useful insights into 

processes present in much larger and more complex models.  Consequently, we have 

three goals.  First, look broadly across the Dewar model to determine if non-monotonic 

behavior is wide-spread or only an anomaly in the few dimensions previously studied.  

Second, determine if the non-monotonicity can be abated through stochastic perturbation.  

Third, in order to accomplish the second objective, develop a method for measuring non-

monotonicity in the response surfaces generated by the model.    

Our overall goal is to discover if the trend of the response surface in non-

monotonic regions can be made more amenable to interpretation, without destroying the 

chaos inherent in the attrition/reinforcement process.  While this might have the 

appearance of just ‘fixing’ the model, there is a qualitative difference between artificially 

scripting a model’s processesscripting removes, to a great extent, any semblance of 

realityand allowing a model’s parameters to reflect the randomness inherent in  

combat.  An example of this randomness is the uncertainty a commander faces when 

trying to decide when to send in his reserves or, if discretion is the better part of valor, 

when to withdraw.  

 xx



Latin Hypercube Sampling (McKay 1979), an extension of Latin Square 

sampling, is used to thoroughly search the 18 dimensions of the Dewar model.  This 

search discovers non-monotonicity in not only five additional two dimensional 

subspaces, but also in multiple measures of effectiveness (MOE’s).  The second column 

in Table 0.1 displays the results of the Latin Hypercube search through each of the 

natural two-dimensional subspaces.  The first number in the second column corresponds 

to the initial forces subspace, where the response surfaces, generated by each of the 

sixteen design points, all exhibited non-monotonic trends, in some cases more extreme 

than in the original Dewar model.  The numbers, in the second column, indicate the 

percentage, from each design point, that were non-monotonic response surfaces.  This 

table indicates that non-monotonicity is pervasive in at least six of the two-dimensional 

subspaces of the deterministic Dewar model.   
Two-dimensional    Percent of Response Surfaces 
Dewar Model Subspaces   Containing Non-monotonic Behavior 
Initial Force Levels       80% 
Force Ratio Reinforcement Thresholds    81% 
Percent of Remaining Forces Reinforcement Threshold  18% 
Force Ratio Withdrawal Threshold      0% 
Percent of Remaining Forces Withdrawal Threshold     0% 
Reinforcement Blocks Available      6% 
Reinforcement Block Delay    100% 
Reinforcement Block Size      88% 
Attrition Coefficients      94% 

 
Table 0.1. Latin Hypercube Sampling Results. 

 
78 of the 144 response surfaces found during the Latin Hypercube Sampling exhibited 
non-monotonic behavior.   

Striking examples of the wide-spread non-monotonicity in the Dewar model can 

be seen in Figure 0.1 (the original Dewar model response surface), and Figure 0.2.  

Figure 0.1 exhibits non-monotonicity with respect to the measure of effectiveness 

(MOE), ‘who wins.’  Two of the many striking examples we discovered, using Latin 

Hypercube Sampling, are displayed in the top row of Figure 0.2.  These two graphs 

exhibit non-monotonicity with respect to a second MOE, ‘length of battle.’  The two 

bottom graphs in Figure 0.2 exhibit non-monotonicity with respect to the MOE ‘who 

wins.’   All of these graphs represent projections of the 18 dimensions of the Dewar 
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model onto the two−dimensional subspaces indicated by the titles of each graph.  Each of 

these response surfaces is generated by the deterministic Dewar model.   

 
Figure 0.2. Two Dimensional Subspaces Exhibiting Non-monotonic Behavior. 

 
These four graphs are representative of the non-monotonicity found across broad regions 
of the Dewar model’s hyperspace.   
 

The Latin Hypercube Sampling was conducted to determine if there were any 

additional non-monotonic subspaces of the Dewar model.  The fact that there are many 

more such subspaces is cause for concern in the modeling and simulation community.  

The Dewar model contains the same basic processes that many of the larger models use, 
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such as decision thresholds and attrition processes.  If the interaction of these processes in 

the Dewar model generates such widespread non-monotonic behavior, then the larger, 

more complex models may also be affected by similar non-monotonicities, perhaps 

caused by some underlying, as yet, undiscovered chaos.  It has been shown that recent 

output of at least one of these models has exhibited non-monotonic behavior (Saeger, 

2000).   

The fact that there is non-monotonicity throughout the Dewar model gives added 

impetus for finding a way to deal with it. What can be done to smooth non-

monotonicities in the response surface caused by the chaos in the battle trace?  Much of 

the literature reviewed for this paper indicates that stochastic modeling can be a useful 

way to deal with non-monotonic behavior of not only the simple combat model studied 

by Dewar et al., but also other, more complex models.   

A fractional factorial design experiment is run to determine the effect of 

stochastic modeling on the trend of the response surface of the Dewar model.  The results 

are dramatic and convincing and support previous work done by Allen (1994), Lucas 

(1997) and Seager (2000).  Stochastic perturbation can both reduce and exacerbate the 

non-monotonic behavior of the response surface.  The model parameters having the 

greatest effect on the reduction of the non-monotonic behavior in the model are the 

attrition coefficients.  When the attrition coefficient parameters are made stochastic, the 

average reduction in non-monotonicity is four orders of magnitude.  It is also important 

to note that some of the response surfaces, generated during the fractional factorial 

experiment, resulted in an increase in non-monotonicity of two orders of magnitude.  

Figure 0.3 displays the best, and worst, response surfaces generated by the fractional 

factorial experiment.  The graph on the left is an example of poor modeling decisions 

exacerbating the non-monotonicity in the response surface.  The graph on the right is an 

example of the dramatic reduction in non-monotonicity and the improvement in the 

interpretability of the response surface when stochastic modeling is done carefully.    This 

second graph also appeals to our intuitionthe outcome remains uncertain until one side 

or the other quits the field of battle. 
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Figure 0.3. Careful Stochastic Modeling Can Smooth Non-monotonic Trends. 
The graph on the left is an example of the effect of, haphazardly making parameters 
stochastic.  This graph exhibits even more non-monotonicity than the original Dewar 
model response surface.  At the opposite extreme, when done the right way, as in the 
graph on the right, the non-monotonic behavior of the response surface can be 
dramatically reduced, making it more amenable to interpretation.  

 

Caveat actor et cavendo tutus:  The Dewar model is a relatively small model 

when compared to most of the larger, more complex models that DoD currently uses.  

Counting explorations, testing, Latin Hypercube Sampling, fractional factorial 

experiments, and final empirical testing of analytical results, approximately ten billion 

model runs were made during the course of this study.  This is but an inconsequential 

fraction of the number of runs it would take to thoroughly explore every corner of the 18-

dimensional Dewar model. Clearly, conducting this type of analysis with the large DoD 

models is impossible.   However, the results of this study may suggest useful methods for 

dealing with non-monotonic output in these larger, more complex models.  

The bottom line is that non-monotonicity may be more pervasive in combat 

models than previously suspected.  Stochastic modeling can be a viable method for 

dealing with non-monotonic response surfaces.  However, stochastic modeling must be 

done carefully.  When it is, the non-monotonic behavior of the model can be dramatically 

reduced, thereby making the trend of the response surface more useful for comparative 

analyses.  Thus, the realism of the model can be retained while, at the same time, the 
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trends of the response surface can be used to support decisions between competing 

alternatives.   

Feigenbaum, Mandlebrot and other pioneers of chaos theory have shown that 

chaos is the rule rather than the exception in the real world (Gleick, 1987).  The 

possibility that chaos and its consequent non-monotonicity are also the rule rather than 

the exception in large, complex combat models, is very real.  Stochastic modeling shows 

some promise as a way to deal with this non-monotonicity without destroying the chaos 

that, intuition tells us, adds to the model’s realism.  More realistic models can help 

decision makers save time, money, other assetsand, perhaps, another soldier, sailor, 

airman or Marine gets to enjoy his pension. 
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I. INTRODUCTION  

A. PREAMBLE  

Decision makers throughout the Department of Defense (DoD) use models when 

choosing between various strategic courses of action and deciding whether or not to 

purchase particular weapons systems, implement programs, terminate existing programs, 

close existing facilities, open new facilities, and so on.  The cost of these weapon 

systems, programs and facilities can run into the billions of dollars, and there is always 

the possibility of lives lost.  Ensuring that these models and simulations are logically 

coherent and consistently valid for the purposes for which they are employed is of 

paramount importance.  To the degree that these models and simulations are not verified 

and validated, decision makers may make bad decisions, which wastes time, money, and 

resources and possibly risks the lives of those affected by these decisions.   

  In 1991, RAND released a study indicating that even simple, deterministic 

combat models are subject to non-monotonic behavior2.  This finding was not new.  

However, the finding that the non-monotonicity was due to chaos inherent in the model 

was new.  This is cause for concern in the modeling and simulation community as more 

complex models also may be affected by chaotic behavior.  Many models used in the 

Department of Defense are highly complex and nonlinear, with thousands of variables.  It 

has been shown that recent output of at least one of these models has exhibited non-

monotonic behavior (Saeger 2000).    

In 1931, Kurt Godel proved the possibility that a sufficiently complex system can 

exhibit synergistic behavior not explainable by the sum of the system's components 

(Nagel, 1958).  Looking at the problem of complexity from a slightly different angle,  

Ancker (1995) states that “the most successful procedure for model building [in 

engineering and the physical sciences] has been to work from the simple and small to the 

larger and more complex.  In combat modeling, the process has usually been to start 

large.”  He suggests “that this trend should be reversed.”   The implication here is that 
 

2 Capability added to the side of one combatant leads to a less favorable result for that side. 



 
analysts need to thoroughly understand the smaller, simpler models before proceeding to 

the larger, more complex models.  The RAND study was a step in the right direction.  

This thesis seeks to take the RAND study a step further.  It examines the Dewar model in 

greater detail, with the goal of using insights gained through greater understanding to 

help make models and simulations more useful to decision makers.  Better models and 

greater understanding, in turn, may help save time, money, resources and lives. 

B.   CHAOS AND NON-MONOTONICITY IN COMBAT MODELS 

"For want of a nail . . . the war was lost"  provides a compelling example of 

chaotic behavior on the battlefield.   Had the commander known that victory lay in the 

possession of a nail, he might have won the war.  However, it is an inescapable fact that 

no matter how careful our observations, the data used in our analyses are subject to errors 

in measurement.  In chaotic systems, even if the magnitude of these errors is extremely 

small, the uncertainty associated with the errors, conjoined with sensitivity to initial 

conditionsa characteristic of chaotic systemscreates uncertainty about our 

knowledge of the system in the future.  This uncertainty grows larger as we look farther 

into the future (see Figure 1)3.  Many diverse disciplines use computer modeling and 

simulation to answer questions such as: "What are the possible future states of this 

system given these initial conditions?"   Hence, the causes and effects of chaos on the 

monotonic behavior of computer simulations and models should be of great interest to 

those involved in such research. 

Many of the models currently used by the Department of Defense are coded, 

populated with data, and run time after time in order to predict future states of various 

systems.  But, lurking beneath the surface of these models is the unpredictable, dynamic, 

unstable realm of chaos, resisting analysts’ efforts to obtain reliable results.  The 

instability inherent in nonlinear dynamical systems has been known for hundreds of 

years.  However, only since the 1970s has chaos been studied in any detail (Gleick, 

1987).  Now, thirty years later, renewed interest in the "New Sciences" is stirring in the 

world of Military Operations Research, (Palmore, 2000).  One cause of this renewed 
                                                 

2 

3 Most of the graphs and tables in this thesis are best viewed in color.  The original version of this 
document is available in PDF format from the Naval Postgraduate school, http://www.nps.navy.mil. 



 
interest is the dramatic increase in computing power available to the operations research 

analyst in the last ten years.   
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              Figure 1.1. A Trait of Chaos: Sensitivity to Initial Conditions.   

The value .  Yet, even when this simple system’s initial value changes by 
such a small amount, the future state cannot be predicted indefinitely into the future.  In 
this very simple recursive equation, one of the attributes of chaos, sensitivity to initial 
conditions, is manifest somewhere between the 40

162.2 −≅eps

th and 50th time step.  The values at 
each time step are calculated by the Logistic Iterator which is known to be chaotic.  The 
y-axis of the graph is labeled with the recursion formula.  
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As computers have become more powerful, many DoD models and simulations 

have become more complex.  Increased complexity requires analysts to be much more 

cautious with regard to the output of their models and simulations.  At the same time, 

they are able to use the increased power of computers to more fully explore the concepts 

of chaos and complexity.  So, while the evolution of the computer has exposed analysts 

more directly to the effects of chaos, it has also given them a means with which to study 

and explore its attributes.   

In the realm where models and simulations (M&S) are used to support decision 

making, the decision maker must be able to rely on the results of M&S.  Verification, 

validation and accreditation (VV&A) is a process whereby M&S are sanctioned for a 

particular use.   Verification ensures that the models are properly coded.  Validation 

ensures that the models are appropriate for a particular purpose in a “real-world” setting.  

Accreditation is the official sanction for use by the decision maker who will use results 

from the M&S in his decision making process.   VV&A is the process whereby the 

decision maker ensures that his decisions, based on M&S results, are rationally 

defensible.   

The output of a deterministic simulation or model is called a response curve when 

it is plotted against a single input parameter.  If more than one parameter is varied then 

the plotted output is called a response surface.  Monotonic behavior means that there are 

no bumps, dips, or unexpected reversals in the response surface.  Mathematically, 

monotonic behavior is defined by the following:  for discrete functions, if a function f is 

monotonic non-decreasing, then, if 21 xx ≤ , then )()( 21 xfxf ≤ .  Similarly, if f is 

monotonic non-increasing, then, if 2x1x ≤ , then  for all x in the domain of  

f.  Another way of defining this is to say that if f is a monotonic non-decreasing function, 

then first differences are greater than or equal to zero, i.e.,  .  

Continuous, monotonic non-decreasing functions have first derivatives that are 

nonnegative throughout their domains.  Knowing whether or not a model’s output is 

)() 21 xf≥(xf

0)()( 12 ≥− xfxf
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monotonic can be vitally important, as decision makers use this output to compare 

competing strategies, tactics, systems, and so on. 
C. PREVIOUS RESEARCH PERTINENT TO THIS STUDY 

In 1991 Dewar, Gillogly and Juncosa published a paper that caused a significant 

response in the combat modeling and simulation world. A stream of responses, papers 

and studies followed in its wake.  Each one argued for or against the main points made by 

Dewar et al. or raised interesting issues closely related to the main theme of the paper.  It 

is a well-known fact that chaos is present in combat models.  Chaos can and often does 

cause non-monotonicity in the output of combat models.   The concern with this is that 

. . . when comparisons of strategy, tactics or systems are based on a 
combat model that depends on monotonic behavior in its outcomes, 
modeling combat decisions based on the state of the battle must be done 
very carefully.  Such modeled decisions can lead to non-monotonic and 
chaotic behavior and the only sure ways (to date) of dealing with that 
behavior are either to remove the modeled decisions or to verify that the 
model is monotonic in the region of interest (Dewar et al., 1991) 

Clearly, when decisions depend on a model’s monotonic behavior, non-monotonicities in 

the model can make comparisons difficult, if not impossible. 

 Over the next six years, there were no fewer than ten articles and letters to the 

editor in Phalanx (Bulletin of Military Operations Research), not to mention several 

longer, more in-depth studies conducted by Julian Palmore at the University of Illinois 

and Thomas Lucas of RAND, among others.  Each of these papers explored ways to 

explain, overcome or attenuate the effects of chaos and the resulting non-monotonicities. 

Tsai and Ellenbogen (1992) more fully explored the idea of finding tighter bounds 

on non-monotonic regions in the phase space of models.  They simplified, even further, 

the model used by Dewar et al., in order to come up with a general methodology 

involving "transition points," which lead to bounds for non-monotonic regions.   The 

authors noted that defining bounds on more realistic models would be "considerably 

more complex." 

Palmore offered three causes of instabilities (non-monotonicities): 
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 1.  Computer arithmetic, 

 2.  Structurally unstable implementations of branchings on thresholds set by    
 decision tables, and 

 3.  Structural defects in decision logic (1992). 

Palmore discussed several ways to investigate and address these problems. 

Louer (1993), in a letter to the editor of Phalanx, recalled non-monotonic mischief 

in 1971, when he was involved in the development of the Concepts Evaluation Model 

(CEM) for the U.S. Army.  He advocates the solution they came up withparametric 

variation of variables and stochastic decision thresholds.  Louer claims that both of these 

methods cope with the underlying chaos, while providing results that are very 

informative and trends that are monotonic in behavior. 

Allen, Gillogly and Dewar of RAND (1993) disagreed with Louer's comments 

and provided a counterexample to “demonstrate that stochastic thresholds not only can 

fail to eliminate non-monotonic behavior, but can actually make the non-monotonic 

behavior worse.”  Louer's response was that Allen et al. had missed the point of his letter, 

and he went on to emphasize the use of experimental design  

 . . . to develop response curves reflecting the force performance over 
these ranges of uncertainty . . . If non-monotonic effects show up in these 
response curves, they can be identified.  The skilled analyst then needs to 
make an interpretation of these effects, locate where the effects come from 
and assess if they have any significant influence on the trends of the 
response function curves (1994).  

Cooper picked up the gauntlet cast by Allen et al. and defended Louer.  He 

pointed out that Allen’s experiment was flawed in its design, that the stochastic 

thresholds Allen included in his model were “masked” by other model constraints.  Thus, 

“within an unreachable domain, whether a value in that domain is chosen 

deterministically or stochastically does not matter.”  Cooper went on to emphasize what 

Louer originally urged “ . . . far-ranging sensitivity trials, to explore more of a model’s 

domains . . . for ever more cases and more analysis until there is understanding” (June, 

1994). 



 

7 

In a follow-on article, Cooper (September 1994) noted that the decision rules in 

the Dewar model could be improved.  He showed how a simple, minor change to the 

Dewar model results in purely monotonic behavior.  If the decision to withdraw is made 

with respect to not only engaged forces but also reserve forces, then the non-

monotonicities disappear.  

Huber and Tolk (1994) responded to Allen et al.’s  response to Louer's comments 

on stochastic decision thresholds.  The counter-counterexample showed that "non-

monotonic effects may largely be eliminated if dynamic mission-oriented decision rules 

are used rather than the static state-oriented decision thresholds considered by Dewar, et 

al."  Their conclusions echoed Cooper’s with regard to the unrealistic nature of the 

decision thresholds of the Dewar model and also noted the problems with Allen’s 

“masked” decision threshold.     

Lucas (1997) conducted a study which demonstrated that how you make the 

decision thresholds stochastic matters.  He studied not only stochastic decision 

thresholds, but also stochastic attrition coefficients. Lucas concluded that careful 

stochastic manipulation of both decision thresholds and attrition coefficients can 

significantly smooth the non-monotonicities that arise due to dynamic instabilities 

inherent in combat models.  

Johnson, Isensee and Allison (1995, pp. 87-100) conducted a stochastic 

experiment on the Army’s Concept Evaluation Model (CEM) that indicated “which 

stochastic features most influenced the variability among replications of one simulated 

campaign and [outlined] costs and benefits of using a stochastic version of the CEM.”  

The last article in Phalanx (Lucas and Allen, 1997) highlighted the differences 

between the two camps of analysts that had formed on either side of this ongoing 

discussion about non-monotonic behavior of combat models.  Lucas and Allen examined 

whether or not non-monotonicities can be tamed by making the decision thresholds in the 

model stochastic vice deterministic.  This joint paper concluded that  

the problem of non-monotonicity in even simple deterministic or 
stochastic models continues to be a problem that needs to be addressed.  



 
Investigation of the types of randomization that usually provide sufficient 
overlap to produce ‘smoother’ results may be a useful line of inquiry.   

Even more recently, the Military Operations Research Society published a special 

edition of its Journal dedicated solely to the question of "Warfare Analysis and 

Complexity - The New Sciences, MORS (2000)."   In this special edition, Lucas (2000) 

outlined the divide between deterministic and stochastic models and gave several 

examples where stochastic modeling was superior to deterministic modeling.  Lauren 

(2000) examined the "possibility of using a fractal to describe attrition" in a combat 

model.  Using historical data and simulation, he showed that attrition can reasonably be 

modeled in such a manner.  Hausken and Moxnes (2000) derived a set of ordinary 

differential equations using the theory of stochastic difference equations.  They applied 

their stochastic model to the Ardennes Campaign of 1944 to provide "a more descriptive 

presentation of the campaign."   

At a recent MORS Symposium,  Saeger et al., (2000) gave a briefing on recently 

discovered non-monotonic behavior in the U.S. Army’s VIC (Vector-in-Command) 

model.   After a closer look, they determined that the model was properly coded and the 

data were correct.  In an attempt to get meaningful results out of the model, they defined 

a neighborhood of the phase space, randomly perturbed selected variables and attempted 

to fit a probability curve to the output values of multiple runs.  They concluded that “the 

probability distribution of the [response curve] is a function of the variable that is 

perturbed.  [But there is] no obvious way to determine, a priori, which variables to 

perturb [nor] by what magnitude to perturb them.”  Their recommendation was to 

“perturb all variables [and] perform sensitivity analysis in perturbation magnitude.”   In a 

high-dimensional model, such a sensitivity analysis would be challenging, to say the 

least. 

Much of the literature reviewed for this paper indicates that stochastic modeling 

may provide a useful way to deal with non-monotonic behavior of not only the simple 

combat model studied by Dewar, et al., but also other, more complex models.  Clearly, 

defining the link between model structure and its output, in the presence of chaos, is a 
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small, but very essential part of model verification.  Once we have obtained a more 

comprehensive understanding of simple models, then we can proceed to investigate, step 

by step, the more complex models.   

D. METHOD 

This study is broken up into several smaller pieces, each of which is briefly 

summarized below. 

1.   Java, Numerics and the Effect of Finite Precision on the Battle Trace  

Since we are trying to ascertain the effect of stochastic perturbation on the 

response surface of the Dewar model, the original Dewar model must be modified.  

Stochastic perturbation is nothing more than drawing random values from a given  

distribution and assigning these random values to the parameters of the model.  Of 

course, the parameters of these distributions are carefully chosen so that the distributions 

are centered around the nominal values used in the original model.  Modifying the 

original model in this manner causes random perturbations in the parameter space of the 

model, which in turn, affects the model’s output.    The modified stochastic model is re-

coded in Java.  Following the advice of Palmore (1996), the numerics of the model are 

examined for the following: 

 a.  Computer arithmetic, 

  b.  Structurally unstable implementations of branchings on thresholds set 
                 by decision tables, and 

  c.  Structural defects in decision logic.  

2.   Latin Hypercube Sampling 

Dewar et al. discovered significant non-monotonicity in the response surface of 

their model.  However, they examined only a two-dimensional subspace of their 18 

dimensional model.  Are there other non-monotonic subspaces in the Dewar model?  The 

implication here is that if the Dewar model exhibits significant non-monotonicity in many 

of its subspaces, then other, more-complex models may also be hiding such non-

monotonic behavior.  Additionally, this implies that non-monotonic behavior may be 

more widespread than previously suspected.  Latin Hypercube sampling is used to 
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systematically explore all 18 dimensions of the Dewar model for non-monotonic 

behavior.   

3.   Fractional Factorial Experiment 

Clearly, trying to examine all possible combinations of even the simple Dewar 

model, for the effect of stochastic parameter modeling, is infeasible.  A full factorial 2  

experiment would require *69451*1000 ≅ 18 trillion model runs to explore all 18 

dimensions, at only two levels, without any replications4.  This would take approximately 

249 years on a Pentium III 600Mhz computer with 256 Mb of RAM. The number gets 

even larger as more levels are added.  To keep the number of runs required down to a 

reasonable number and to extract the maximum amount of information out of each run, a 

fractional factorial experiment is used to examine the main and first-order interaction 

effects of stochastic parameters on the Dewar model.  This experiment is confined to the 

same two-dimensional subspace that Dewar et al. examined.  However, the Java Code is 

easily modified to examine any of the other,  , two-dimensional subspaces 

of the model.  The results of this experiment show that, when done properly, stochastic 

modeling can significantly smooth the non-monotonicities, making the response surface 

useful for comparative purposes. 
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4. Defining Non-monotonic Parameters 

To analyze the response surfaces generated by the fractional factorial experiment, 

we need a parameter that measures the non-monotonicity of the response surface.  We 

define, develop, numerically test, and then employ a non-monotonic parameter function 

(NmPF) which calculates six parameters that measure various attributes of the non-

monotonicity of a response surface. 

5.   Measures of Effectiveness 

Just as in the Dewar study, “who wins” is the measure of effectiveness used in 

this study.  However, using stochastic parameters changes the response from a binary, 
                                                 

4  The original Dewar model two-dimensional response surface was comprised of 69,451 points.  We 
replicate each of these points 1000 times to generate a stochastic response surface.   See Chapter II for 
details. 
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win or lose surface, to a continuous response surface representing the probability of a win 

or a loss.  Due to the structure of the model, it is also possible to use other measures of 

effectiveness, such as ‘length of battle.’  The Latin Hypercube sampling discovers several 

subspaces of the original Dewar model where the response surface is non-monotonic with 

regard to this second measure of effectiveness.   We do not explore this measure of 

effectiveness further, but note that it is an area for further research. 
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II. RECODING THE MODEL IN JAVA 

What follow are a brief description of the original Dewar model, some comments 

regarding the modified stochastic version coded in Java, a description of the phase space, 

or response surface generated by the model, and finally a brief check of the model’s 

numerical stability.   

A. A BRIEF DESCRIPTION OF THE ORIGINAL DEWAR MODEL 

The Dewar model contains 18 variable parameters.  Therefore the model’s output 

or response is a point in .  Table 2.1 displays the structure and nominal values used in 

the original Dewar model.   Note the symmetry in the parameters, for each Blue 

parameter there is a corresponding Red parameter.  

18ℜ

 
Parameter (Variable Names) Blue Red 

Initial force level  (IF) B0 R0 
Reinforcement threshold (FRRT, PIFRT) Rn/Bn ≥ 4 or Bn < 0.8B0 Rn/Bn ≤ 2.5 or Rn < 0.8R0 
Maximum allowable reinforcement blocks (RBA) 5 5 
Reinforcement block size (RBS) 300 300 
Reinforcement delay  (RBD) 70 70 
Withdrawal threshold (FRWDT, PIFWDT) Rn/Bn ≥ 10 or Bn < 0.7B0 Rn/Bn  ≤ 1.5 or Rn < 0.7R0 
Combat attrition calculation (AC) Bn+1 = Bn – Rn/2048 Rn+1 = Rn -Bn/512 

Table 2.1. Original Dewar Model  Parameters. 
 

The first parameter, initial force level (IF), is the number of troops with which 

each side starts the battle.  As in the original Dewar study, Blue and Red initial force 

levels typically vary over the range ten through 2000 and ten through 3500 respectively.   

There are two reinforcement thresholds for each side: a force ratio threshold 

(FRRT) and a ‘percent of initial force level’ threshold (PIFRT).  Note that the force ratio 

for these calculations is the same for both sidesi.e., Rn/Bn for both rather than Bn/Rn for 

Blue and Rn/Bn for Red.  For the Blue side, if the force ratio goes above four, then Blue 

calls for reinforcements.  Additionally, if the number of remaining Blue forces ever falls 

below 80% of the initial force level, then Blue calls for reinforcements.  Likewise for 



 
Red, if the force ratio ever falls below 2.5 or if the number of remaining Red forces falls 

below 80% of the initial force level, then Red calls for reinforcements.   

Reinforcements come in block sizes (RBS)that is, the number of reinforcing 

troops that respond to a call for reinforcements.  There is a limit to the total number of 

reinforcement blocks available (RBA) and, as is usual, there is some delay between the 

time reinforcements are called for and the time they actually arrive (RBD).  

Finally, attrition is determined by the Lanchester Square Law, coupled difference 

equations in the last row of Table 2.1.  The number of remaining Blue troops at the end of 

the first time step is equal to the number of Blue troops at the previous time step minus 

the number of Red troops times Blue’s attrition coefficient.  The attrition coefficient (AC) 

is the rate at which one Red troop kills Blue troops.  The number of remaining Red troops 

at the end of the nth time step is calculated in the same manner.   

The structure of the Dewar model represents a large, less effective Red force 

opposing a smaller, more effective Blue force.  Another perspective is that Blue 

represents an entrenched force defending against a Red attack.  In this case, the attacking 

force usually has a larger force and, due to exposure, is more prone to attrition.  The 

entrenched defending force usually has a smaller force level and a well prepared 

defensive fire plan; it usually takes fewer casualties and is more efficient at killing, at 

least initially.   Thus, the structure of the Dewar model represents a basic tension between 

the opposing forces.  Care must be taken, when randomly perturbing the model’s 

parameters, to ensure that this basic tension is preserved; otherwise, the model becomes a 

meaningless function that processes random input and returns meaningless output.   

B.  A STOCHASTIC MODIFICATION AND THE POTENTIAL FOR 
ADDITIONAL PARAMETERS 

To examine the effect of stochastic modeling on the response of the Dewar 

Model, the model is re-coded in Java.  Each of the parameters discussed above is 

modeled as a generic random variate so that most distributions, along with their 

parameters, can be used.  This creates the potential for a dramatic increase in the 

dimension of the model.  Each parameter can now be stochastically modeled in n 
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different ways.  The n distributions have m parameters that can be considered factors as 

well.  To preclude this explosion of factors, only two distributions are considered.  The 

attrition coefficients are modeled as normal random variates, with means equal to the 

nominal Dewar model values and standard deviations equal to ten percent of the square 

root of their means.  All other parameters, when stochastic, are modeled as uniform 

random variates with intervals, centered on the nominal Dewar model values, ranging 

from plus to minus five percent of the nominal value.   These distributions and values are 

based on the work done by Lucas (1997) and Seager (2000).  Clearly, the use of other 

distributions is possible.  Exploring the effects of different distributions on the response 

surface is another useful area of inquiry, but it is not pursued in this thesis. 

C. THE RESPONSE SURFACE  

1. A Description of the Deterministic Response Surface 

The original version of the model is deterministic.  The values for each of the 18 

parameters are passed to the model, which returns a ternary response: “0” if Blue wins, a 

“1” if Red wins or a “-1” if neither side winsi.e., the battle has not finished after the 

allotted number of time steps.  To generate a response surface, two of the 18 parameters 

are allowed to vary over a wide range of values. The points that lie on the response 

surface are the result of stepping through each of the possible combinations of the two 

Blue and Red parameters that are allowed to vary.  The other sixteen initial parameter 

values remain fixed for that run.  The points, thus generated, are plotted over the first 

quadrant of the Cartesian plane (all initial parameter values are always positive).  The x-

axis represents the initial values of the Blue parameter that was allowed to vary.  The 

initial values of the Red parameter that was allowed to vary lie along the y-axis.  The z-

axis represents the height of each point on the response surface above or below the x-y 

plane.   

Figure 2.1 displays the response surface, of the original Dewar model’s initial 

force level subspace.  This response surface is comprised of 69,451 points.  The initial 

force levels vary from ten through 3500 (Red) and ten through 2000 (Blue), in increments 

of ten; thus, 349*199 = 69,451 points.  Obviously, the model must be run 69,451 times to 

15 



 
generate one such response surface.  These numbers vary, depending on which 

parameters are allowed to vary. 

 Note the region of extreme non-monotonic behavior in Figure 2.1, which occurs 

when Red initial force levels are between ten and 1800, and Blue initial force levels are 

between ten and 500.  Also displayed in this graph are the force ratio thresholds for 

reinforcement and withdrawal.  Notice that the withdrawal thresholds bound the region of 

non-monotonicity.  Now, we take a look at the response surface generated by the 

stochastic version of the model. 

 
Figure 2.1. Binary Response Surface of Original Dewar Model. 

 
FRRT = Force ratio reinforcement threshold; FRWDT = Force ratio withdrawal 
threshold.  The characters ‘r’ and ‘b’ stand for ‘Red’ and ‘Blue,’ respectively.  This figure 
displays the response surface of the original Dewar model.  The reinforcement and 
withdrawal thresholds are superimposed on the response surface.  Note that the non-
monotonicity is bounded by the withdrawal thresholds.  The color bar, to the right of the 
graph, indicates that the black region represents the initial force levels that result in a 
Blue win.  The white region represents those initial force levels that result in a Red win. 
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2. A Description of the Stochastic Response Surface 

The following process generates a stochastic response surface: 

 a.  All stochastic parameters, for a given run, are assigned a random value 

from the distribution used to model the parameterattrition coefficients are modeled as 

normal random variates with means equal to the nominal values of the original Dewar 

model and standard deviations equal to ten percent of the square root of the mean.  All 

other parameters are modeled as uniform random variates, are centered on the nominal 

values of the original Dewar model and vary minus to plus five percent of the nominal 

value. 

 b.  All parameters that are not stochastic are assigned the nominal values 

of the original Dewar model.   

 c.  Each input point (a vector of the 18 parameter values) is replicated 

1000 times.  Before each replication is run, a new value is randomly chosen for each 

stochastic parameter.  The reason for the large number of replications is discussed in 

Chapter V.  The short answer, for the moment, is that this reduces the variance of the 

model’s response surface that is due only to the randomness of the stochastic 

parameters.   

The model returns the average of the one thousand replications.  Thus, each 

response point is the mean of a thousand replications of its corresponding input point 

(an 18-tuple).  In the same manner as described above, a response surface is generated 

by allowing two parameters to vary over a given range.  To generate a stochastic 

response surface, the model must be run 69,451*1000 = 69,451,000 times.  Since each 

point on the response surface, for the stochastic version of the model, is the mean of 

1000 replications, the response surface is now continuous and represents the estimated 

probability that Red wins, given the Blue and Red parameter values.  Figure 2.2 is an 

intensity plot of a response surface generated by the stochastic version of the Dewar 

model.  The color bar to the right of the graph gives an indication of the height of the 

response surface.  Note that, in this particular graph, the response surface trend is easier 



 
to interpret than the response surface in Figure 2.1.   The region in black represents the 

initial force levels that result in a Blue win; the region in white represents the initial 

force levels where Red wins.  The colors in between indicate, according to the color 

scale to the right of the graph, an increasing probability of a Red win.  Once again, the 

force ratio thresholds are superimposed on the graph.  The withdrawal thresholds 

bound the region where the probability of a Red win is greater than zero and less than 

one. 

 
Figure 2.2. An Example of a Stochastic Response Surface. 

Just as in Figure 2.1, the reinforcement and withdrawal thresholds are superimposed on 
the response surface.  Note that the region between the withdrawal thresholds has greatly 
expanded, when compared to Figure 2.2.  The clear division between the black region, 
where Blue always wins, and the white region, where Red always wins, is bounded by the 
withdrawal thresholds.  The red/yellow region, between these thresholds, represents an 
increasing probability of a Red win, according to the color bar displayed to the right of 
the graph. This appeals to our intuition: the outcome remains uncertain until one side or 
the other withdraws. 
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D.  CHECKING THE NUMERICS OF THE  MODEL        

Julian Palmore (1996) listed three potential problem areas that should be checked 

in every model to ensure that they are eliminated as a source of instability in the output of 

a model.   

a.  Structurally unstable implementations of branchings on thresholds set 

      by decision tables. 

b.  Structural defects in decision logic. 

c.  Computer arithmetic. 

1. Decision Tables and Structural Defects in Decision Logic 

The Dewar model’s structure, outlined in Table 2.1, does not contain any 

branchings on thresholds set by decision tables.  Hence, item “a” on Palmore’s list of 

things to check is not a potential source of instability in this model.    

The re-coded Java model has the same logical structure as the original Dewar 

modeli.e., the logical flow through the decision thresholds is identical.  First, 

reinforcement decisions are made, followed by withdrawal decisions.  Finally, attrition 

calculations are made, and then the loop repeats.  Cooper (1994) and others have 

criticized the Dewar model for the lack of realism implied by the structure of the decision 

thresholdsi.e., the commander makes withdrawal decisions without taking into 

consideration the number of reserves.  This criticism may have merit, but is not an issue 

in determining whether or not there are defects in decision logic.   Based on the fact that 

the structural decision logic of the re-coded model is identical to the structural decision 

logic in the original Dewar model and Dewar’s analysis of that model, we conclude that 

the re-coded model is not defective with regard to structural decision logic. 

2. Computer Arithmetic 

The decisions to reinforce and withdraw, in the Dewar model, are based upon the 

calculated force ratio (Red/Blue) at each time step.   According to Palmore (1996), 

“Computer arithmetic affects iterative computational processes.  Time is measured by the 

number of iterations performed.  Rounding and precision affect outcomes as iteration 



 
proceeds.”  The original Dewar model iterated 200,000 times.  The re-coded model in 

Java uses either 10,000 or 20,000 iterations5.  Therefore, the source with the greatest 

potential for causing error in the model’s response is the cumulative effect of rounding 

error due to the “iterative computational processes.”   

The single, most active iterative process in the model is the Lanchester Square 

Law coupled difference equation attrition process.  In order to allow this process to 

continue for an arbitrary number of iterations, a modification of the model is needed.  In 

the Dewar et al. study, a ‘force-ratio only’ model is described and used.  This model has 

no withdrawal threshold and so continues to run until a predetermined number of 

iterations is reached.  The best way to visualize this iterative process is to plot the battle 

tracei.e., the force level of each side at each iteration.  The effects of rounding error 

and precision are tested against the attrition process in this ‘force-ratio-only’ model, 

coded in Java.   

3. Testing the Effect of Rounding Error and Finite Precision on the 
Output of the Model 

The Java programming language includes a class called BigDecimal that allows 

variable precision arithmetic.  Each of the Blue and Red force levels is represented with 

both a BigDecimal and a ‘double precision’ variable.  Java’s ‘double precision’ variables 

maintain 17 significant digits (precision) in all calculations.  Using the variable precision 

of BigDecimal, the number of decimal digits used in a calculation can be specified.  The 

force ratio (Red/Blue) is calculated with both a BigDecimal and a ‘double precision’ 

variable during each iteration.  Then, the BigDecimal value is converted to a ‘double 

precision’ value and the two ratios are compared.  If they differ by more than one, the 

model exits.  Next, one decimal digit of precision is added to the BigDecimal variables, 

and the model is run again.  The return values for each model run are: 

a.  Precision, the number of decimal digits of accuracy used by BigDecimal. 

b.  Number of iterations until the difference between ratios is greater than one. 
                                                 

5 We started this study using only 10,000 iterations.  Response surfaces that were non-monotonic with 
respect to multiple MOEs were subsequently discovered.  To maintain focus on the MOE (Who wins),  the 
number of iterations was increased to 20,000. 
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c.  Force Ratiosi.e., BigDecimal (Red/Blue) and double (Red/Blue). 

Table 2.2 lists the results of the experiment and the model’s parameter settings for 

each run.  As expected, the number of iterations executed, until the force ratios differ by 

at least one, increases as the precision of the BigDecimal variables increases.  Once 

BigDecimal precision is greater than 17, the number of iterations executed before the 

force ratios diverge levels off at 3278 iterations.  Figure 2.3 is a scatter plot of the results.  

The graph indicates a strong linear relation between precision and iterations. 
 
Initial Force Levels:  20 (Blue)  -  40(Red) 
Attrition Coefficients:  0.005(Blue)  -  0.02(Red) 
Force Ratio Reinforcement Thresholds: 4.0(Blue)  -  2.5(Red) 
Reinforcement Block Size: 10.0(Blue)  -  10.0(Red) 
 
P Iters  BigDecimal Ratio  Double Precision Ratio 
1 56   3.8     1.8513995374206604 
2 56   4.06     1.8513995374206604 
3 465   4.045    2.2227715067848046 
4 465   4.0605   2.2227715067848046 
5 936   4.02194   2.1224803956691356 
6 892   2.210905   4.058957745991585 
7 1170  1.8846299   4.052567009807578 
8 1325  4.05934872   2.192053368452815 
9 1776  4.055303309   2.1363901453745644 
10 1877  1.8830982468  4.05249263887456 
11 2150  2.8410151988  3.8463064329708287 
12 2496  2.102862579982  4.051924137329424 
13 2569  3.8347182117007  2.8344406281484735 
14 3079  2.06417480125275  4.058972776610194 
15 3160  4.05678560873031  2.19215081243929 
16 3279  3.886759214094909  2.8587189106141215
17 3278  3.842331956483406  2.838151523457638 

 

18 3278  3.8423781034319027 2.838151523457638 
 19 3278  3.842338402457037  2.838151523457638 
 

Table 2.2. Using Double Precision, Rounding Error Affects the Outcome After Only 
3278 Iterations. 

 
BigDecimal is a Java class that allows computation with variable precision real numbers.  
Double precision variables, in Java, maintain 17 digits of accuracy in all calculations.  
This table compares the results of simple computations, using these two variables, in 
order to find the point at which rounding erroran artifact of finite precisionbegins to 
affect the computed results.   The row, highlighted in Red indicates the maximum number 
of iterations possible, when using double precision, before cumulative rounding error 
affects the first digit to the left of the decimal point. 
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Figure 2.3. How Precision and Rounding Error Affect the Outcome. 

 
This graphs shows that, for each added digit of precision, it takes, on average, another 
224 iterations before an iterated computation begins to diverge from the true answer.  

 
4.  Results of the Simple Experiment 

The results of the experiment imply that, when using ‘double precision’ variables, 

the calculated orbitthe battle trace calculated using ‘double precision’ 

variablesdiffers from the exact orbit by at least one, after only 3278 iterations.  A 

difference of one is enough to change the course of the battle.  Let BD be the force ratio 



 
calculated with BigDecimal variables (with precision greater than 17), and DP be the 

force ratio calculated with ‘double precision’ variables.    Then, at the 3278th iteration 

|BD – DP| > 1.   Suppose, at the 3278th iterations, BD = 3.0.  Then, either DP ≤ 2 or DP ≥ 

4.  In the first case,  (DP ≤ 2), Red would have reinforced in the ‘double precision’ 

variable model, while no reinforcement would have occurred in the BigDecimal variable 

model.  In case two, (DP ≥ 4), Blue would have reinforced in the ‘double precision’ 

variable model, while no reinforcement would have occurred in the BigDecimal variable 

model.  Therefore, when using Java’s ‘double precision’ variable, the battle trace 

diverges from the true battle trace after only 3278 iterations.  The red line in Figure 

2.3the slope coefficient of ‘iterations’ regressed on ‘precision’indicates that for each 

additional digit of precision, it takes approximately another 224 iterations before the 

calculated orbit begins to diverge from the exact orbit. 

 The original Dewar model executes 200,000 iterations for each model run.  

According to the results of the simple experiment, tracking the true battle trace through 

all these iterations requires approximately  200,000/224 ≅ 893 digits of precision.  The re-

coded Java model executes, normally, 20,000 iterations.  Therefore, the Java model 

requires approximately 90 digits of precision to accurately track the true battle trace.  

Variable precision arithmetic is cumbersome and significantly increases the amount of 

time needed to run a model.  This seems to be a problem.  However, a lemma from chaos 

theory may provide some help.  

5. The Shadowing Lemma 

As mentioned previously, the battle trace of the Dewar model is chaotic.  Peitgen 

et al. (1992, pp 577 – 580) derive the Shadowing Lemma, which, briefly summarized, 

shows that 

[w]hen [comparing] computed orbits with exact orbits then the deviation due to 
accumulated error propagation will soon amplify so rapidly in the course of the 
computation that typically any correlation between exact orbits and computed 
orbits will vaporize.  Nevertheless . . . within the shadow of the computed orbit 
there will be some exact orbit traveling along. 
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“Within the shadow” is precisely defined in the derivation of the Shadowing 

Lemma. Given a computed orbit { },...,, 210 xxx

0 >

 , there exist an exact orbit { }, 

started at some initial point near , and an 

...,, 210 zzz

x 0ε  such that iii xz −=> εε  for i = 0, 1, 

2, ….  The implication here is that, given a chaotic attractor, such as the Dewar battle 

trace, the effect of accumulated error propagation on the numerical stability of the 

attractor is bounded by a finite value.  Figure 2.4 shows a visual demonstration of the 

Shadowing Lemma.  The Shadowing Lemma implies that, even though the calculated 

orbit does not follow the exact orbit, point for point, each point in the calculated orbit 

corresponds to some point or is within ε of a point in the exact orbit. 

The four graphs in Figure 2.4 show the plots of two superimposed battle traces 

from the ‘force-ratio only’ model.  Each battle trace contains 20,000 points, representing 

the force levels at each of 20,000 iterations.  The first battle trace, plotted in each graph 

of Figure 2.4, is generated using BigDecimal variables, with precision set to 90.  

According to the results of the simple experiment, using 90 decimal digits of precision 

for the BigDecimal variables should result in an exact orbit for 20,000 iterations.  The 

second battle trace is generated using ‘double precision’ variables.  From the discussion 

of the simple experiment’s results, ‘double precision’ rounding errors begin to affect the 

orbit of the battle trace when approximately 3278 iterations have been executed.   

The graph in the upper left corner displays the first 3277 points of both battle 

traces.  The BigDecimal battle trace is plotted in black, and then the ‘double precision’ 

battle trace is plotted in red.  As expected, there is no difference in the two orbits.  The 

upper right graph displays the 3278th through the 6278th points of both battle traces.  

Again, as expected, each of the points in the two battle traces no longer corresponds to 

the same orbit.  Rounding error has caused the points in the ‘double precision’ battle trace 

to skip onto, or close to, other points in the orbit.  The lower left graph shows the last 

three thousand points generated by the 20,000 iterations of the model.  Again, the points 

in the ‘double precision’ battle trace and the BigDecimal battle trace are following 

different orbits.  The lower right graph is a plot of the entire battle trace for both the 



 
BigDecimal and the ‘double precision’ variables.  At first, it may seem as if the 

preponderance of the color red is due only to ‘pixel bleed over.’  That is, the resolution of 

a computer screen or a printer cannot cleanly distinguish between two points that are 

close together; hence, a point plotted from the first battle trace is overwritten by a 

nearbybut not equalpoint from the second battle trace.  Surely this is true for many 

of the points in Figure 2.4.  However, if none of the points were equal, there would be 

much more black showing than red.  To confirm this assertion, Figure 2.5 is an enlarged 

view of the graph in the lower right corner of Figure 2.4.  Note the preponderance of the 

color red, an effect implied by the Shadowing Lemma.  

Peitgen et al. emphasize two implications of the Shadowing Lemma: 

[First,] . . . the shadowing lemma should not mislead us to think that it 
provides us with a way to escape the consequences of sensitivity to initial 
condition[s] . . . [Second,] . . . the shadowing lemma does ensure us that 
statistical properties measured by computer experiments are in fact 
significant. 

We conclude from the foregoing that the chaotic battle trace remains chaotic even 

in the presence of cumulative rounding error and the finite precision of Java’s ‘double 

precision’ variables.  Now that we have looked at the stochastic version of the Dewar 

model, re-coded in Java, we turn to the problem of searching for additional non-

monotonic subspaces. 
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Figure 2.4. Shadowing Lemma Effect and Numerical Stability. 
 

These graphs illustrate the Shadowing Lemma, a result from chaos theory that implies 
that chaotic attractors are stable in the presence of cumulative rounding error.  Note that, 
even though the calculated battle trace begins to diverge from the exact battle trace after 
only 3278 iterated computations, the calculated battle is always within the shadow of the 
exact battle trace. 
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Figure 2.5. Enlarged View of the Shadowing Lemma Effect. 
 

This graph is an enlarged view of the graph in the lower right corner of Figure 2.4.  Two 
battle traces have been superimposed on the same graph.  The first was calculated using 
arbitrary precision (BigDecimal).  Hence, it represents the exact battle trace.  The second  
was calculated using double precision (17 digits of precision).  Each of the battle traces 
contains 20,000 points.  This enlarged view shows, more clearly, that the second battle 
trace remains in the shadow of the firsti.e., cumulative rounding error, an artifact of 
finite precision, does not cause numerical instability; the double precision battle trace is, 
in a sense, just as accurate as the exact battle trace.  Therefore, the double precision battle 
trace remains sensitive to initial conditions. 
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III. LATIN HYPERCUBE SAMPLING:  SEARCHING FOR NON-
MONOTONICITY 

This chapter briefly describes the Latin Hypercube Sampling method.  The design 

for the sample is developed, and the samples are taken.  The results of the sampling 

suggest that non-monotonicity is more pervasive in the Dewar model than previously 

thought.  The conclusions of this chapter lead to the need for a fractional factorial 

experiment, defined and designed in the next chapter. 

A.  LATIN HYPERCUBE SAMPLING DESIGN 

As outlined in Chapter II, the Dewar model has an 18 dimensional phase space.   

Dewar et al. found significant non-monotonicity in the Initial Force Level subspace.  The 

question remains: are there other subspaces that exhibit significant non-monotonic 

behavior when additional capability is added to only one side?  In order to answer this 

question, a systematic look across the entire phase space is necessary.  Because the 

combinatorics prohibit a full factorial search, a more efficient way to conduct this search 

must be found. 

In 1979, McKay et al. published a method called Latin Hypercube Sampling 

(LHS).  This method provides a more thorough “space-filling” search and “can be viewed 

as a K-dimensional extension of Latin square sampling.”  In 1998, Ye developed a 

variant of the LHS method, Orthogonal LHS (OLHS).  However, the designs allowed by 

the OLHS method are fairly restrictive; you lose orthogonality unless you restrict 

yourself to a fairly small subset of the possible designs.  We use the LHS method vice the 

OLHS method for two reasons.  First, we do not want to restrict the search to the narrow 

confines of an OLHS design.  Second, the primary goal is to determine if additional non-

monotonic behavior is present in the Dewar Model, rather than to calculate the effects of 

changes in the variables.  Therefore, we give up orthogonality in favor of an increased 

capability to search a broader region of the 18 dimensional space of the Dewar model.    
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1. Implementing the Latin Hypercube Design 

The LHS method generates experimental design points in the following manner.  

A single variable is chosen as the ‘free’ variable.  This free variable is assigned a 

sequence of values over which it will vary for each experimental run.  Let n be the 

number of free variable values in the assigned sequence.  Each remaining variable is 

assigned an interval that is divided into equal subintervals.  In a ‘main effects’ Latin 

Hypercube, as we run here, the number of subintervals is equal to the number of 

remaining variables.  In the case of the Dewar model, the assigned interval of each 

remaining variable is divided into 17 subintervals.  The midpoints of each of these 

subintervals, together with the n values of the ‘free variable,’ become the elements of one 

design point, X, i.e.,   

X = {fv}∪ [ x1, x2, …, x17], 

where fv is the sequence of free variable values and each xi is a midpoint from one of the 

subintervals of the 17 remaining variables.  For each experimental run, one midpoint is 

randomly chosen from a subinterval of each of the remaining variables; any given 

midpoint is chosen only once.  Just as in a Latin Square design, each 18-tuple 

combination of midpoints occurs only once.  This ensures that the broadest possible range 

of the entire phase space is sampled.   Using this method, the number of experimental 

design points is equal to the number of free variables times the number of remaining 

variablesi.e., n(n-1).  In the case of the Dewar model, an LHS experiment designed in 

this manner results in 18*17 = 306 experimental design points.  This equates to 

306*69451, or 21,252,006 model runs.  However, due to the symmetry of the Dewar 

model, the number of runs can be reduced by more than half. 

2. Modifying the LHS Design 

Notice that the Dewar model variables come in symmetric pairse.g., Blue and 

Red Initial Force Levels; Blue and Red Attrition Coefficients; etc.  Table 3.1 shows this 

pairing.  It is natural to pair these parameters as the ‘free variables’ and allow them to 

vary together.  Thus, the output of each design point will be a response surface rather 

than a curve.  Since we use two free variables at a time, there are nine pairs of free 



 
variables and 16 remaining variables after each pair of free variables is chosen.  Thus, 

Therefore, the number of experimental design points is reduced from 306 to 9*16 = 144.  

Thus, only 10,000,944 model runs are necessary.  However, no information is lost.  In 

fact, we end up exploring a greater range of the model’s 18 dimensions this way. If only 

one free variable is used each time, each of the remaining variables is allowed only 17 

distinct values.  By allowing each of the two variables to vary across a much broader 

region of its domain, the breadth of the search is dramatically increased.  Of course, there 

are many other possibilities.   

Instead of using only symmetric pairs, we could use each possible combination of 

pairs of variables.  This would result in the need for 


 experimental runs.  

The advantage, of course, would be the ability to visualize two-way interactions between 

each of the variables.  This idea could be expanded to include three-way interactions by 

allowing three free variables at a time.  However, the number of required runs quickly 

becomes unrealistic, even if 2448 runs don’t already seem excessive.  Since the primary 

goal of the LHS experiment is to search for non-monotonicity rather than to evaluate 

interactions, using symmetric pairs of the variables seems to be a reasonable choice. 
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3. How Thick Should the Hyperplanes Be? 

Another point requires careful consideration.  When designing an LHS 

experiment, how large should the domains of the variables be?  Should the hyperplanes 

be thick or thin?  The answer depends on the model and what makes sense with regard to 

the values of the variables.  The original Dewar model was structured to represent a 

smaller, more efficient force opposing a larger, less effective force or, if you prefer, a 

smaller Blue defensive force opposing a larger Red attacking force.  If the domains of 

free variables and the remaining variables are allowed to range over too wide an interval, 

some of the design points will be meaningless, just an agglomeration of random numbers.  

On the one hand, since we want to preserve the original model’s basic structure and 

tension between opposing forces, we restrict the domain of the remaining variables to 

fairly thin hyperplanes, centered around the nominal values of the original model.  On the 
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other hand, we allow the free variables to vary over a much wider interval centered on the 

nominal values in the original Dewar model6.  Using this reasoning, the resulting 

response surfaces must be carefully inspected so that inappropriate regions of the 

response surface are not used to draw conclusions about the model’s behavior.   

Once the basic structure is determined, the experiment is designed and 

implemented by stepping through each of the free variable pairs, calculating the input 

values for each design point and then running the model for each design point.  Table 3.1 

shows the design used for this paper.   

  Free Variable Values Remaining Variable Values  

Variable 
Names 

Original 
Dewar 
Model 
Values 

Lower 
Bound 

Upper 
Bound Step Size Lower Bound Upper Bound 

Non-
monotonic 
Response 
Surfaces 

bIF 40.00 10.00 2000.00 10.00 300.00 600.00
rIF 80.00 10.00 3500.00 10.0 800.00 1700.00

     0-15 

bFRRT 4.00 3.00 5.00 0.0100 3.950 4.050
rFRRT 2.50 1.50 3.50 0.0100 2.450 2.550

   0, 3-10,  
    12-15 

bPIFRT 0.80 0.70 0.90 0.00 0.7950 0.805

rPIFRT 0.80 0.70 0.90 0.00 0.7950 0.805
    5, 6, 9 

bFRWDT 10.00 9.00 11.00 0.0100 9.950 10.050

rFRWDT 1.50 0.50 2.50 0.0100 1.450 1.550
 

bPIFWDT 0.70 0.60 0.80 0.00 0.6950 0.7050

rPIFWDT 0.70 0.60 0.80 0.00 0.6950 0.7050
 

bRBA 6.00 1.00 200.00 1.00 5.00 6.00

rRBA 6.00 1.00 200.00 1.00 5.00 6.00
        1 

bRBD 70.00 0.00 100.00 0.50 69.00 71.00

rRBD 70.00 0.00 100.00 0.50 69.00 71.00
      0-15 

bRBS 300.00 10.00 500.00 2.4500 290.00 300.00

rRBS 300.00 10.00 500.00 2.4500 290.00 300.00
  0-6, 9-15 

bAC 1/2048 0.000010 0.0010 0.000004950 0.000478281250 0.000498281250
rAC 1/512 0.000020 0.0020 0.000009900 0.001852125000 0.002053125000

    0-13, 15 

Table 3.1. Latin Hypercube Sampling Experiment Design and Results. 
 
78 of the 144 response surfaces sampled, exhibited non-monotonic behavior.  
Additionally, many of the surfaces were non-monotonic with respect to multiple MOEs. 

                                                 
6 Note that two of the parameters are integer valued (RBA, RBD).  When their values are pertubed by 

5 percent, 16 distinct values are not created.   
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4. Results of the Latin Hypercube Design Experiment 

The first cell in the last column corresponds to the initial forces subspace, where 

the response surfaces, generated by the sixteen design points, all exhibited non-

monotonic trends.  In some cases, there was more extreme non-monotonicity than in the 

original Dewar model.  The red numbers in each cell indicate the design points that 

resulted in non-monotonic response surfaces.  This table indicates that non-monotonicity 

is pervasive in at least six of the two-dimensional subspaces of the deterministic Dewar 

model.  There are 152 other two-dimensional subspaces of the Dewar model that were 

not searched.  It is possible that additional non-monotonic behavior could be found in 

these subspaces as well.  

Not only was non-monotonicity lurking in the suburbs and shadows, but it was 

also parading down prominent avenues of the Dewar model’s hyperspacesee the 

graphs in Figure 3.1 and the last column of Table 3.1.  The graph in the lower right 

corner of Figure 3.1 shows the 14th experimental run of the Blue and Red Reinforcement-

Block-Size (RBS) pair of free variables.  This graph is a projection of the other sixteen 

dimensions onto the RBS plane.  Dewar et al. used several different RBS values as they 

looked at the Initial Force Level (IF) subspace.  However, the non-monotonicity 

displayed here was not previously discovered.  Similarly, the other graphs in Figure 3.1 

are representative of the scores of non-monotonic surfaces newly discovered in distinct 

two-dimensional subspaces of the Dewar model’s phase space.   

5.   Non-monotonicity in a Different Measure of Performance  

The measure of effectiveness (MOE) we focus onthe same used by Dewar, et 

al.is: “who wins?”  Two of the many striking examples we discovered, using Latin 

Hypercube Sampling, are displayed in the top row of Figure 3.1.  These two graphs 

exhibit non-monotonicity with respect to a second MOE “length of battle.”  The two 

bottom graphs in Figure 3.1 exhibit non-monotonicity with respect to the MOE “who 

wins?”  All of these graphs represent projections of the 18 dimensions of the Dewar 

model onto the two−dimensional subspaces indicated by the graph titles.  Each of these 

response surfaces is generated by the deterministic Dewar model.    
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Figure 3.1. Non-monotonicity Appears Throughout the Original Dewar Model. 

The top two graphs show non-monotonic behavior with respect to the MOE “Length of 
Battle,” i.e., the battle was still going after 10,000 iterations. The two graphs in the 
bottom row exhibit non-monotonic behavior with respect to the MOE “who wins?” 
 

In our implementation of the Dewar Model for the LHS experiment, the battles 

run for only 10,000 time steps.  If neither side wins after 10,000 time steps, the model 

returns  “-1.0.”  The black regions in the graphs in the upper right and left corners of 

Figure 3.1 exhibit non-monotonic behavior with respect to the MOE “length of battle,” in 

the Attrition Coefficient and Reinforcement Block Delay subspaces.  The black regions 



 
in the graphs in the lower left and right corners of Figure 3.1 exhibit non-monotonic 

behavior with respect to the MOE “who wins?” in the Force Ratio Reinforcement and 

Reinforcement Block Size subspaces.  The pervasiveness of significant non-monotonicity 

in this simple model would seem to make its results highly suspect.  Is there any way to 

control, if not eliminate, this non-monotonicity? 

6. Can Non-monotonicity Be Reduced or Eliminated? 

Dewar et al. discovered that the non-monotonic behavior in their simple model 

was due to the chaotic behavior induced by the forcing and damping behavior of the 

reinforcement thresholds and the attrition equations, respectively.  Scientists in many 

diverse fields have discovered that it is possible to control chaotic behavior in some 

systems, to varying degrees, by randomly perturbing their systems, (Gleick, 1987).  

Additionally, during the past nine years, advances in computer technology have given 

analysts a much-improved capability to explore solutions to the problems highlighted by 

the Dewar study.  One such method, proposed in various forms by Allen (1993), Louer 

(1994), Lucas (1997) and Seager (2000), is stochastic perturbation of the input variables, 

specifically those variables used in the decision thresholds and the attrition coefficients.    

This idea is implemented with the Dewar model.  We stochastically perturb 

various input parameters to see what effect they have on the response surfaces, both those 

discovered by Dewar et al. and those we found using the LHS experiment.  The intent is 

to take a systematic, in-depth look at the effect of stochastic perturbations on the response 

surface.  The results may be useful in helping determine which of the 18 parameters 

should be made stochastic, if any.   A fractional factorial experimental design can 

accomplish this goal in an economical way.  The next section addresses this experimental 

design. 
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IV. THE FRACTIONAL FACTORIAL EXPERIMENT 

A. DETERMINING THE EFFECTS OF STOCHASTIC MODELING ON THE 
MODEL’S RESPONSE SURFACES 

The results of the Latin Hypercube Sampling reveal that six of the nine paired 

parameters produce non-monotonic response surfaces (see Table 3.1, “Non-monotonic 

Runs” column). Rather than try to analyze these six subspaces simultaneously, we run a 

fractional factorial design experiment on the initial force level subspace, the same 

subspace examined by Dewar et al.  There are two constraints for each of the 

reinforcement and withdrawal thresholds; these eight constraints plus the other ten 

parameters give us the 18 dimensions of the Dewar model (The original Dewar model 

parameters are shown in Table 2.1).   

Based on the results of the Latin Hypercube Sampling, we choose a 29-3 resolution 

V design with the following generators:  I = 123457, 123468, 123569.  This design 

ensures that no main effect is confounded with any 2nd, 3rd or 4th order interaction. It also 

ensures that 2nd order interactions are not confounded with 3rd order interactions or other 

2nd order interactions (Box et al., 1978).   Since the primary focus is on the main effects, 

the first six columns are written out as a complete 26 factorial design.  The subsequent 

columns are constructed using the generators listed above.  The order of the runs is not 

randomized since their order will not have any effect on the responses.  

The design in Table 4.1 is the result of the considerations listed above.  The “1” 

and “-1” correspond to “stochastic” and  “not stochastic,” respectively.  The attrition 

coefficients, when stochastic, are modeled as normal random variates with means equal 

to the nominal Dewar model values and standard deviations equal to ten percent of the 

square root of their means.  All other parameters, when stochastic, are modeled as 

uniform random variates with intervals centered on the nominal Dewar model values and 

ranging plus and minus five percent of the nominal value.   These distributions and values 

are based on the work done by Lucas (1997) and Seager (2000).  In order to evaluate the 



 
experimental results, we need parameters that measure the non-monotonicity of the 

response surface.  These parameters are the subject of the next chapter.    

 
Generators:  I = 123457, 123468, 123569
Thesis Fractional Factorial Design (64) 

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8
IF FRRT PIFRT RBD RBS AC FRWDT PIFWDT RBA IF FRRT PIFRT RBD RBS AC FRWDT PIFWDT RBA

1 -1 -1 -1 -1 -1 -1 -1 -1 -1 33 -1 -1 -1 -1 -1 1 -1 1 1
2 1 -1 -1 -1 -1 -1 1 1 1 34 1 -1 -1 -1 -1 1 1 -1 -
3 -1 1 -1 -1 -1 -1 1 1 1 35 -1 1 -1 -1 -1 1 1 -1 -
4 1 1 -1 -1 -1 -1 -1 -1 -1 36 1 1 -1 -1 -1 1 -1 1 1
5 -1 -1 1 -1 -1 -1 1 1 1 37 -1 -1 1 -1 -1 1 1 -1 -
6 1 -1 1 -1 -1 -1 -1 -1 -1 38 1 -1 1 -1 -1 1 -1 1
7 -1 1 1 -1 -1 -1 -1 -1 -1 39 -1 1 1 -1 -1 1 -1 1 1
8 1 1 1 -1 -1 -1 1 1 1 40 1 1 1 -1 -1 1 1 -1 -
9 -1 -1 -1 1 -1 -1 1 1 -1 41 -1 -1 -1 1 -1 1 1 -1 1
10 1 -1 -1 1 -1 -1 -1 -1 1 42 1 -1 -1 1 -1 1 -1 1 -
11 -1 1 -1 1 -1 -1 -1 -1 1 43 -1 1 -1 1 -1 1 -1 1 -1
12 1 1 -1 1 -1 -1 1 1 -1 44 1 1 -1 1 -1 1 1 -1 1
13 -1 -1 1 1 -1 -1 -1 -1 1 45 -1 -1 1 1 -1 1 -1 1 -1
14 1 -1 1 1 -1 -1 1 1 -1 46 1 -1 1 1 -1 1 1 -1
15 -1 1 1 1 -1 -1 1 1 -1 47 -1 1 1 1 -1 1 1 -1 1
16 1 1 1 1 -1 -1 -1 -1 1 48 1 1 1 1 -1 1 -1 1
17 -1 -1 -1 -1 1 -1 1 -1 1 49 -1 -1 -1 -1 1 1 1 1 -1
18 1 -1 -1 -1 1 -1 -1 1 -1 50 1 -1 -1 -1 1 1 -1 -1
19 -1 1 -1 -1 1 -1 -1 1 -1 51 -1 1 -1 -1 1 1 -1 -1
20 1 1 -1 -1 1 -1 1 -1 1 52 1 1 -1 -1 1 1 1 1
21 -1 -1 1 -1 1 -1 -1 1 -1 53 -1 -1 1 -1 1 1 -1 -1
22 1 -1 1 -1 1 -1 1 -1 1 54 1 -1 1 -1 1 1 1 1 -
23 -1 1 1 -1 1 -1 1 -1 1 55 -1 1 1 -1 1 1 1 1 -1
24 1 1 1 -1 1 -1 -1 1 -1 56 1 1 1 -1 1 1 -1 -1
25 -1 -1 -1 1 1 -1 -1 1 1 57 -1 -1 -1 1 1 1 -1 -1 -1
26 1 -1 -1 1 1 -1 1 -1 -1 58 1 -1 -1 1 1 1 1 1
27 -1 1 -1 1 1 -1 1 -1 -1 59 -1 1 -1 1 1 1 1 1
28 1 1 -1 1 1 -1 -1 1 1 60 1 1 -1 1 1 1 -1 -1 -
29 -1 -1 1 1 1 -1 1 -1 -1 61 -1 -1 1 1 1 1 1 1
30 1 -1 1 1 1 -1 -1 1 1 62 1 -1 1 1 1 1 -1 -1 -
31 -1 1 1 1 1 -1 -1 1 1 63 -1 1 1 1 1 1 -1 -1
32 1 1 1 1 1 -1 1 -1 -1 64 1 1 1 1 1 1 1 1

Run Run
9

1
1

1
1

1

1

1

-1

1
1

-1
1
1

1

1
1
1
1
1

-1
1  

Table 4.1. 29-3 Resolution V Fractional Factorial Experimental Design. 
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V. DEFINING NON-MONOTONICITY PARAMETERS 

A. THE NEED FOR PARAMETERS TO MEASURE NON-MONOTONICITY 

 Except for a single deterministic run in which none of the model parameters are 

stochastic, all of the fractional factorial experimental design runs have at least one 

stochastic parameter.  Therefore, the response surface will exhibit random fluctuations—

i.e., some percentage of the points along the response surface will exhibit non-monotonic 

behavior due only to the randomness we have added to the model.  In order to analyze the 

response surfaces generated by the stochastic version of the model, we must be able to 

tell the difference between truly non-monotonic response surfaces and those surfaces 

whose non-monotonicity is merely the result of the random fluctuations due to the 

stochastic parameters.   The problem is how to separate these random fluctuations from 

bona fide non-monotonicities—that is, non-monotonicities that will be present as the 

sample size goes to infinity.  To be able to distinguish between random non-

monotonicities and real non-monotonicities, we need to find a reasonable bound for the 

magnitude of the random fluctuations.  Any non-monotonicities larger than this bound 

are probably due to some attribute of the model other than the randomness that we have 

added to it.  In other words, this bound can be used to discriminate between random noise 

and any truly non-monotonic behavior manifesting itself in the response surface.   

In addition to being able to discriminate between random noise and real non-

monotonicities, we need to know how many real non-monotonicities there are, and if 

there are any non-monotonic trends.  Non-monotonic trends are two or more successive 

non-monotonic points. Thus, we need parameters that measure these attributes of the non-

monotonicity or roughness of the response surfaces.  Ideally, these parameters will be 

small when the surface is monotonic and will increase in magnitude as the surface 

becomes increasingly non-monotonic.   We turn now to a discussion of the distribution of 

the points on the response surface generated by the stochastic version of the Dewar 

model.  Understanding how these points are distributed will help us define the non-

monotonicity parameters. 
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The outcome of a single replication of the model is, in essence, the outcome of a 

Bernoulli trial.  A success is denoted by a “1.0,” in which case Red wins.  A failure is 

denoted by a “0.0,” in which case Red loses (i.e., Blue wins).  In the fractional factorial 

experiment, the model is replicated 1000 times for each point.  Thus, each point on the 

response surface is the mean of 1000 replications.  Since a Red win is defined as a 

success, the mean of 1000 replications equates to the proportion of the 1000 replicated 

outcomes that Red wins.  Let p be the true proportion of Red successes.  Let 

n
successsp #ˆ = , be the estimated probability that Red wins, given p.  The Central Limit 

Theorem implies that the distribution of  is approximately normal, provided the 

number of replications is large enough to overcome the natural skewness of the Bernoulli 

distribution.  If the number of trials, n, times the probability of success, p, and 1 - p is 

greater than five, i.e.,  and 

p̂

) >5>np 51( − pn , then the normal approximation is accurate 

(Devore, 1995).  This implies that the normal approximation can be used, provided that 

the response surface does not fall below 0.005 or go above 0.995.   If the response surface 

falls below or above these respective values and the response surface is fairly smooth, 

there is no practical ambiguity with regard to the outcome.  However, if the response 

surface falls above or below these respective values and the surface is highly non-

monotonic, there will be practical ambiguity with regard to the outcome.  If the non-

monotonicity parameters are properly defined and precisely calculated, then they should 

be fairly sensitive to these extreme cases.  

    The standard deviation of the true population parameter is 
n

pp
p

)1(
ˆ

−
=σ . 

The variance of  is greatest when the probability of success is 0.5.  Figure 5.1 shows 

the standard deviation as a function of the probability of success.    

p̂
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Figure 5.1. Standard Deviation of Response Surface Points When n = 1000. 

Each response surface point is approximately normally distributed.  The variance of these 
points is greatest when the probability of success is 0.5.  Compare this Figure with  
Figure 5.2. 
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Each point on the response surface is generated independently of the other points.  

Thus, all of the points on the response surface between 0.005 and 0.995 are independent 

and, approximately, normally distributed.  Since we know the distribution of the points 

on the response surface, we can use this information to define parameters with which to 

measure the non-monotonicity of the response surfaces generated by the model.  

 Given a response surface, we can now determine whether or not it is ‘monotonic’7 

by using the following procedure.  Check for non-monotonic behavior by holding one of 

Blue (x) or Red (y) constant and numerically "observe" the response surface values that 

lie along the chosen Blue or Red contour.   For example, suppose that the two-

dimensional subspace variables are initial force levels.  Fix the Red initial force level, y, 

at 500, and examine the projection of the response surface onto the x-z  plane.   This 

projection is a curve in the x-z plane. 

The sign of a simple linear regression slope coefficientz regressed on x in this 

casedetermines whether the overall trend of the response curve, along the given 

contour (in this case y = 500), in the x-z plane is positive or negative (increasing or 

decreasing).   Suppose that the regression coefficient is positive—i.e., increasing 

probability of Red win as initial Red force level increases.  If the response surface is truly 

monotonic, we expect each successive point on the response curve to be at least as big as 

its immediate predecessor.  Of course, due to random variation, there may be some small 

non-monotonicities when the limiting underlying curve is monotonic.  But if the 

underlying curve is truly monotonic, then the magnitude of these non-monotonicities, due 

to random variation, will infrequently fall more than three standard deviations above or 

below the limiting underlying curve.  

Given that the overall trend of the response surface is increasing, we construe 

successive points as monotonic as long as they are at least as big as their immediate 

predecessors.  Those points that fall below their immediate predecessor we call non-

monotonic.   But this non-monotonicity may be due only to the random fluctuations of 

the stochastic parameters in the model.  If this is not the case—suppose that the next  
                                                 

7 The single quotes are used here to distinguish between a ‘monotonic’ stochastic surface, as described 
in this chapter, and a response surface that meets the strict mathematical definition of a monotonic non-
decreasing (non-increasing) surface.    
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point falls below the preceding point by  three or more standard deviations—then we 

construe the successive point as a statistically significant non-monotonicity.   

Comparing successive points along the response curve is the same as finding the 

difference between the values of successive points along the response curve.  More 

specifically, let 1p

p̂

 and 2p

p̂

 be the true proportions of successes (Red wins) at two points 

on the response surface.   Also, let  and  be the empirical estimates of  and .  

As shown above,  and  are independent, approximately, normally distributed 

random variables.  Their difference Y

1p̂ 2p̂

2

1p 2p

1 2

1ˆˆ pp −=  is also a normal random variable, where  

121212 ]ˆ[]ˆ[]ˆˆ[][ pppEpEppEYE −=−=−= ,  and 

n
pppppVarpVarppVarYVar )1()1(]ˆ[]ˆ[]ˆˆ[][ 1122

1212
−+−

=+=−= .   

Therefore, when  and , the distribution of Y is: 1p̂ )995.0  ,005.0(ˆ 2 ∈p







 −+−

−≈
n

ppppppNormalY )1()1(  , 1122
12 . 

Note that the standard deviation of Y, Yσ , is larger than p̂σ , as can be seen by 

comparing Figure 5.1 with Figure 5.2.  Additionally, note that the greatest variance for Y 

occurs when  and   are both 0.5.  Now that we know the distribution of the 

difference between points along a contour of the response surface, we can test the 

hypothesis that the magnitude of some non-monotonicity is significant.   For an 

increasing surface, let the null hypothesis be, 

1p 2p

0: 2 1 ≥− ppH o , i.e., the response curve is 

monotonic non-decreasing.  The alternative hypothesis is: 0: 12 <− ppH a .  Then, 

calculate the test statistic  

)ˆ1(ˆ)ˆ1(ˆ
1000)ˆˆ(    

1122

12

pppp
ppz

−+−

−
= , 

Since we care only about non-monotonic points, we calculate this statistic only for non-

monotonic deviations from the overall trend of the response surface.   
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Figure 5.2. Standard Deviation of Y )ˆˆ( 1 ii pp −= + .  

This graph indicates that the maximum variance in the value of Y occurs when  and 
 are both equal to 0.5.  Compare the maximum variance, listed in the legend of this 

Figure, with the maximum variance of  in Figure 5.1.   and Y are both 
approximately normally distributed, but the variance of Y is about thirty percent greater 
than the variance of .  We expect this increase in variance, as variance is additive, even 
when taking the difference between two random variates. 

1ˆ +ip

ip̂

ip̂ ip̂

ip̂
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More precisely, let p = f(x) be the response curve and let 22 xnx
pxnxp

r
−

−
=
∑
∑  be the slope 

coefficient of a simple linear regression of p on x (Devore 1995).   If 

0][]1[  and   0 <−+> ipi pr , or 0][ >]1[  and   0 −+< ipi pr , then p[i+1] is a non-

monotonic deviation from the overall trend of the response surface.  If z ≥ 3, then H0  is 

rejected and  p[i+1] is a statistically significant non-monotonic deviation from the overall 

trend of the response surface. 

Thus, we have found a potential bound for the magnitude of the random 

fluctuations in the response surfaces generated by the stochastic version of the Dewar 

model.  Even though non-monotonic deviations from the trend of the response surface 

greater than two standard deviations are likely to be caused by something other than the 

random fluctuations of the stochastic parameters, we want to increase the likelihood that 

non-monotonic deviations in the response surface are truly non-monotonicities and not 

just random fluctuations due to the stochastic parameters.  Therefore, three standard 

deviations are used as the boundary instead of two.  For a standardized normal random 

variate, we expect to see observations three standard deviations from the mean about 1.3 

times in a thousand.   

 However, the situation is further complicated by the fact that the difference of 

each successive pair of points along the response surface is not independent—i.e., two 

successive comparisons share a common point. Thus, there is dependence among the 

multiple comparisons.  This makes finding the exact sampling distribution and error rates, 

analytically, very difficult.  Instead, the sampling distribution and error rates are 

determined numerically.  First, however, we give a brief description of the program that 

will generate the distribution. 

B. THE NON-MONOTONIC PARAMETER FUNCTION 

NmPF (Non-monotonic Parameter Function), a program written in SPlus, 

implements the procedure outlined above.  The code for this function is listed in 

Appendix A.  For the sake of this discussion, assume that the overall trend of the 

response curve is positive, i.e.,  
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022 >
−

−
=
∑
∑

xnx
pxnxp

r , 

where r is the slope coefficient of a simple linear regression of p on x.   Starting with the 

first outcome value and stepping along the curve from smaller to larger values of the x 

variable, the program checks each pair of adjacent points, denoted  p[i] and p[i+1].  The 

first point in each pair is compared with its immediate successor to determine whether or 

not  p[i+1] -  p[i] ≥ 0.  If not, the program uses the test statistic derived above to calculate 

the standardized z-value of Y ][]1[ ipip −+= .  If the absolute value of the test statistic is 

greater than three, then the non-monotonic deviation from the overall trend of the 

response surface is construed as significant.  That is, the magnitude of the non-

monotonicity implies it is likely caused by some attribute of the model other than the 

random fluctuations of the stochastic parameters.   

After calculating the z-values for the non-monotonic points on the response curve, 

the program sums the magnitudes of all the z-values and sets the sum equal to NmP.   

NmPF returns not only the NmP value, but also the number of non-monotonic jumps (J) 

and the number of significant jumps (SJ).  Additionally, NmPF detects non-monotonic 

trends.  A trend is defined as two or more successive non-monotonicities, i.e.,                

, where j = 1 … n and n > 1.  NmPF returns the sum of all trends 

(NmT), the number of non-monotonic trends (T) and the number of significant non-

monotonic trends (ST) along the response curve.   Keeping track of trends is necessary 

since a series of single, insignificant, non-monotonic jumps could result in a significant 

deviation from the overall trend of the response surface, but would not be picked up by 

the NmP parameter.  

0][][ <−+ ipjip

NmPF continues to track each non-monotonic trend until there is either a single 

significant jump in the opposite direction, or the sum of two or more jumps in the 

opposite direction becomes significant.  Once this last constraint is met, NmPF stops 

tracking the current non-monotonic trend and starts looking for the next non-monotonic 

deviation at the point where it stops tracking the current trend.  Figure 5.3 illustrates the 

calculation of these parameters. 
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Figure 5.3. A Piecewise Linear, Non-monotonic Curve.    

This graph illustrates the output of the NmPF parameter values for a known response 
curve.  Just below the x-axis are the calculated NmPF parameter values for this curve.  
The sum of all non-monotonic jumps (NmP) is 4.05.  There are 25 total jumps (J), only 
one of which is a significant jump (SJ).  Hence, there are 24 insignificant jumps.  The 
sum of all non-monotonic trends (NmT) is 13.9.  There are also five trends (T), only two 
of which are significant (ST).  Hence, there are three insignificant trends.  Note that the 
NmT parameter value is more than three times as large as the NmP parameter value.  
This highlights the utility of the NmT parameter; it has picked up on both significant non-
monotonic trends, whereas NmP missed the larger trend because it was made up of 
several insignificant jumps. 
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The original response curve in Figure 5.3 is clearly non-monotonic.  Each point 

on the original curve is used as the probability of success in a Bernoulli trial.  Each of the 

points on the graph, designated by small circles, is the mean of one thousand such 

Bernoulli trials.  The overall trend of the perturbed points is indicated by the regression 

line that runs from the upper left corner to the lower right corner of the graph.  The 

regression line indicates that the overall trend is decreasing.  Thus, if , 

then  is a non-monotonic deviation from the overall trend of the response curve.  

0][]1[ >−+ ipip

]1[ +ip

 Starting with the perturbed points in the upper left hand corner of the graph, 

observe that the third point from the left (small circle),  p[3], is non-monotonic.  

However, it is neither a significant non-monotonicity nor the start of a non-monotonic 

trend.  Continuing along the response curve, from left to right, note that p[5] is the start of 

a non-monotonic trend;  not only is p[6] – p[5] > 0, but so is p[7] – p [5] > 0.  This 

upward trend continues up through p[8].  p[9] is a jump in the opposite direction.  

However, since  p[9] – p[8] is not a significant jump and p[10] – p[4] > 0, NmPF 

continues tracking this trend up through p[11].   p[11] – p[10] is a significant jump in the 

opposite direction.  Therefore, NmPF stops tracking the trend at p[11] and starts looking 

for the next non-monotonic deviation from the overall trend, starting with p[11].  In a 

similar manner, the remaining trends were identified and the NmPF values were 

calculated based on the total number of jumps and trends found along the response curve. 

Each of the five trends is highlighted in red and labeled from left to right by “Tx,” where 

x is the trend number.  The two significant trends are labeled “ST1” and “ST2.” The last 

segment of the third non-monotonic trend is the only significant non-monotonicity (SJ) 

that occurred on this response surface.  It is labeled “SJ.”    

C. TRANSFORMING THE Z-VALUES 

As mentioned above, NmPF uses three standard deviations as the threshold for a 

significant non-monotonicity.  However, three standard deviations is a sharp boundary, 

and numbers near this boundary, but slightly less in magnitude, could be real non-

monotonicities and not just random fluctuations.  Therefore, it does not seem appropriate 

to exclude them from consideration.   For example, suppose that there are three 

successive points, each of which is a non-monotonic deviation from the overall trend of 
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the response surface, but each of them has an absolute z-value just less than 3.0, say 2.99.  

Then each of these points would not be included in the NmP value calculated by the 

program.  Compare this with the case where there are three successive points with z-

values slightly larger than 3.0, say 3.01.  Since each of these latter points is larger than 3, 

they would all be included in the NmP value calculated by the program.  The non-

monotonicity in both cases is, for all practical purposes, identical.  In the first case, if the 

non-monotonic points slightly less than 3.0 are the only non-monotonic points, then the 

NmP value would be zero.  In the second case, if the non-monotonic points slightly larger 

than 3.0 were the only non-monotonic points, then the NmP value would be 9.03.  

Ideally, NmP should be influenced by all of these points, but not as much by those z-

values whose magnitudes are less than 3.  What is needed is a custom function, f ,  that 

equals 3 when z = 3, increases as the magnitude of z gets large and decreases to zero, 

quickly, as z approaches zero.    So, define the following transformation of the z values:  


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where  .  Thus,  as   ;   as   and, finally,  

 increases linearly when z > 3.  This transformation makes the NmP values 

continuous.  The additional parameter λ, allows the function to be more or less 

responsive to the threshold boundary.  The graph in Figure 5.4 shows some representative 

values of λ and its effect on the behavior of . 
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Figure 5.4. Z-value Transformation Function.  

As λ Increases, approaches zero more quickly when )(df 0<d . In the calculations that 
follow, λ = 6 gives the most sensible behavior. 
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D. THE EMPIRICAL DISTRIBUTION OF THE NMPF VALUES 

As noted at the end of section V.A above, the true distribution of the difference 

between points on the response surface is difficult to determine analytically.  Hence, we 

determine the distribution of these points numerically.  The NmPF parameters, also 

described above, measure various attributes of these numbers and so are parameters of 

the distribution of these points.   

The actual code that calculates the NmPF parameter values is modified slightly so 

that it generates sensible output when non-monotonic jumps occur from one to zero, and 

vice versa.  An adjustment factor of 10  is added to the denominator of the z statistic to 

preclude division by zero.  Thus, the actual formula used in the NmPF function is: 

9−

9
1122

12

10)ˆ1(ˆ)ˆ1(ˆ
)ˆˆ(

    
−+−+−

−
=

pppp

npp
z ,  

where n is the number of replications.  This adjustment factor has a negligible effect on 

the z statistic when data values are greater than 0.005 and less than 0.995.  However, 

when data values are simultaneously close to zero and one, the z statistic becomes large.  

In those cases where a non-monotonic jump from one to zero, or vice versa, occurs, the z 

statistic is bounded above by  

9

9
10

10
nn

=
−

. 

When the deterministic model is run, n = 1, and the value of a single non-monotonic 

jump is bounded above by 78.622,31109 = .  When the stochastic model is run, 

, and the value of a single non-monotonic jump is bounded above by 1000=n

69 10101000 =⋅ .   Figure 5.5 displays the z statistic surface, computed without the 

adjustment factor (left), and with the adjustment factor (right).   The  and  values 

used to generate these graphs are contained in the interval [0.005, 0.995].  The graph 

clearly shows that the adjustment factor has no effect on the z statistic for response 

surface values bounded by 0.005 and 0.995.   

1p̂ 2p̂
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Figure 5.5. Adjustment Factor for z Statistic Does Not Affect Results 

 

To determine the distribution of the NmPF values, Monte Carlo simulations are 

run in which NmPF is tested on several known response curves. Two monotonic curves 

and three non-monotonic curves are randomly perturbed, thus generating a stochastic 

response curve—i.e., a curve whose values are bounded by 0 and 1.  Since the true 

underlying curves are known, the parameters generated by the NmPF can be tested to see 

if they accurately reflect the behavior of these curves.  The random binomial generator in 

SPlus is used as the stochastic parameter of the Monte Carlo simulation.  

The first monotonic curve tested is the horizontal line y = 0.5.  This curve is used 

since the stochastic perturbations generated along this line have the greatest variance.  

The variance of any other probability response curve generated over a monotonic surface 

in this manner must be smaller.  The results of this simulation will provide a “worst case” 

with which we can compare unknown surfaces.   

Two vectors are created, an x vector and a y vector.  The x vector contains the 

same number of elements as a typical slice of the Dewar model’s response surface.  The 

values of x are the sequence of numbers from ten to 2000 in increments of ten.  Thus, 

there are 200 elements in the x vector.  The second vector, the y vector, contains the same 

number of elements as x.  For the first simulation, each of the y values is equal to 0.5.  

Each of these 200 y values is used as the ‘probability of success’ argument in the 
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binomial random generator function in SPlus—i.e., the true probability of a Red Win at 

each x value.  1000 Bernoulli random variates are generated for each of the elements of 

the y vector. The mean of each of these one thousand trials is then calculated and saved in 

a third vector called yp.  After each of the elements in y is randomly perturbed in this 

manner, we draw the response curve by plotting x vs yp.  The first two graphs in the top 

row of Figure 5.6 illustrate the input and output of this process.  The third graph in the 

top row shows the simple regression line that represents the overall trend of the data—

i.e., whether the general trend of the response curve is increasing or decreasing.  Once 

created, the new vector, containing the means of 1000 Bernoulli trials, is passed as an 

argument to NmPF.  NmPF calculates the following parameters for the response curve: 

a.  NmP—The sum of the magnitudes of all non-monotonicities. 

b.  Jumps (J)—The number of non-monotonicities. 

c.  Significant jumps (SJ) —The number of  Jumps whose magnitude  

     is greater than 3.  

d.  NmT—The sum of magnitudes of all non-monotonic trends. 

e.  Trends (T)—The number of non-monotonic trends.  

f.  Significant Trends (ST)—The number of Trends whose  

     magnitudes are greater than 3. 

 This entire process is repeated one thousand times.  For each replication, NmPF 

calculates the parameter values listed above and then generates a histogram for each of 

them.  The last six graphs in Figure 5.6 display the histograms, along with means and 

standard deviations for each NmPF parameter.   

We repeat this Monte Carlo simulation for a monotonic decreasing surface.  The 

results are graphically displayed in Figure 5.7.  Note that the NmPF parameter values are 

smaller than the “worst case” scenario shown in Figure 5.6.  Figures 5.7 – 5.9, the results 

of the simulations of the three known non-monotonic curves, show that the NmPF 

parameters behave as expected when used to measure response surfaces whose true 

underlying surface is non-monotonic.  The results of these five simulations indicate that 

the NmPF parameters may be useful in measuring the non-monotonicity of a response 

curve.  However, further testing is necessary.  
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Figure 5.6. A Constant, Monotonic Function.   

Stochastic perturbation creates non-monotonicity.  How often are these non-
monotonicities significant?  Any successive point that is higher than its predecessor is 
non-monotonic.  The simple linear regression slope coefficient for this response surface 
should be zero.  However, due to stochastic perturbation it is not.   Since the regression 
coefficient is not zero, the NmPF parameters only count non-monotonic deviations from 
the overall trend of the response curve.  In this particular case, that equates to roughly 
half of the points on the response curve (random perturbation of the points on p = 0.5 
distributes roughly half the perturbed points above 0.5 and the other half below 0.5).  
According to the simulation results, when the true surface is monotonic, random 
fluctuations greater than three standard deviations happen, on average, about 0.3 times 
out of a thousand.  Likewise, significant trends happen, on average, about 1.8 times out of 
a thousand.  Since the variance of the Bernoulli distribution is greatest when the 
probability of success is 0.5, the NmPF values from this simulation equate to a “worst 
case” scenario, given that the underlying surface is truly monotonic.  Compare this with 
Figures 5.6 – 5.9.       
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Figure 5.7. A Decreasing, Monotonic Function.   

The regression line in the top right corner graph indicates the overall trend of the data is 
decreasing.  Thus, moving along the response curve from left to right, any successive 
point that is higher than its immediate predecessor is non-monotonic. The graphs in the 
second and third rows indicate that, among the non-monotonicities, random fluctuations 
greater than three standard deviations occur, on average, about 0.11 times out of a 
thousand.   Note that the decrease in the values of NmP, S, SJ, NmT and ST from the 
corresponding values in Figure 5.6.  Since the variance of the binomial is smaller, on 
average, for this surface than for the surface in Figure 5.6the variance is smaller, on 
average, because the surface is decreasingthe fluctuations are also smaller, hence the 
smaller NmPF parameter values.   Note that the overall number of jumps remains fairly 
constant.  The points on the response curve are normally distributed; hence, the random 
fluctuations are almost as likely to be above the true surface as below.  In each 
simulation, there are the same number of original points (200), so we expect that roughly 
half of the stochastic points will be non-monotonic.  This trend is fairly consistent 
throughout Figures 5.5 – 5.9 
.    
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Figure 5.8. An Extremely Non-monotonic Function.  

Large, non-monotonic trends are obtained by the following equation: 
4

2sin +
=

xy .   

Here, underlying "truth" is non-monotonic; hence, the NmPF parameter values should be 
larger than when underlying "truth" is monotonic, and they are.  Note that, when true 
non-monotonic trends in the response curve are present, NmT is a better indicator than 
NmP of non-monotonic behavior.  If the underlying trend is fairly smooth, and the points 
are fairly dense, there will be few significant single jumps, and so NmP will be small.  
However, since the true underlying curve has long, pronounced non-monotonic trends, 
the NmT value identifies these as significant.  The multi-modal histogram of NmP 
reflects the distribution of the significant jumps.  Based on the values in Figure 5.6, we 
would fail to classify this response curve as significantly non-monotonic using only the 
NmP parameter.  Thus, the NmT value is also needed. 
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Figure 5.9. What Happens If the Frequency Is Doubled? 

If the non-monotonicity is doubled, we would expect some of the NmPF parameter 
values to at least double, and indeed they do; in fact, NmP and SJ more than triple in 
value compared to Figure 5.8.  However, the Trends value is reduced by fifty percent, 
while ST remains almost constant.  This seemingly non-intuitive behavior is caused by 
the stretching of the response curve.  Since each response curve has the same number of 
points, and the length of this curve has doubled, the point density along this response 
curve has decreased.  Consequently, there are fewer chances for non-monotonic trends, 
unless the curve is truly non-monotonic.  Again, the number of overall non-monotonic 
jumps remains approximately constant.  According to the “worst case” numbers in Figure 
5.6, we would classify the curve in Figure 5.9 as significantly non-monotonic.  
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Figure 5.10. A Non-monotonic, Piecewise Function.   

Since the actual curve underlying the response curve is non-monotonic, the number of 
significant jumps and trends should be higher than in Figure 5.6, and they are.  Here, 
there are not the same long, pronounced non-monotonic trends as in Figures 5.7 and 5.8.  
So, in this sense, the non-monotonicity is more tame than in those figures.  However, this 
irregular curve has more Jumps and Significant Jumps. Hence, its NmP value is almost 
twice as large as the NmP value in Figure 5.9.   Based on the “worst case” numbers from 
Figure 5.6, we would classify the response curve in Figure 5.10 as significantly non-
monotonic.  
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In all five Monte Carlo simulations, the number of points along the response 

curve remains constant; the only changes are in the shape and inclination of the curve.  

The results, displayed graphically in Figures 5.5 – 5.9, show that the NmPF parameters 

behave in an intuitive manner.  Additionally, the results of the first simulation provide 

limiting values, or upper bounds, which can be used to classify the non-monotonicity of 

unknown response curves, based on their NmPF parameter values.  Table 5.1 lists these 

worst-case limiting values.  The number of jumps, significant jumps, trends and 

significant trends are discrete rather than continuous quantities.  The use of discrete 

values seems more appropriate.   Therefore, Table 5.1 also lists quantiles for the right 

tails of the NmPF parameter distributions.  Note that the quantile values closely match 

the three standard deviation values.  NmPF values greater than |µ ± 3σ|  we define to be 

significant; this corresponds, roughly, to the 99.5th quantile of the empirical values. 
        µ      σ     µ+3σ 

NmP      1.7310 1.9650   7.6260 
Jumps   97.5300 4.1090 109.8570 
SJumps   0.2948 0.5371   1.9061 
NmT      8.7930 4.2250  21.4680 
Trends  24.3300 2.0580  30.5040 
STrends  1.7520 1.2430   5.4810 
 

                     Quantiles 
 

    0.5%  1.0% 10.0%  80.0%  90.0%  99.0%  99.5%           
NmP       0.02  0.02  0.09   3.46   4.29   7.93   9.02   
Jumps    87.00 88.00 92.00 101.00 103.00 107.00 108.00  
SJumps    0.00  0.00  0.00   1.00   1.00   2.00   2.00  
NmT       0.65  0.95  3.68  12.30  14.50  19.90  20.90  
Trends   19.00 20.00 22.00  26.00  27.00  29.00  30.00  
STrends   0.00  0.00  0.00   3.00   3.00   5.00   6.00  
 

Table 5.1. NmPF Parameter Means, Standard Deviations and Quantiles For the 
Worst Case Monotonic Curve. 

 

From Table 5.1, we conclude that if the underlying trend of the response curve is 

truly monotonic, then we do not expect to see NmPF parameter values greater than the 

estimated values listed in the 99.5th quantile column.  A comment is necessary here.  We 

have set the significance level at, roughly, three standard deviations (the 99.5th quantile) 

to increase the probability that curves classified as non-monotonic truly are non-

monotonic.  By doing so, we have increased the probability of a type II error—that is, 
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failing to classify a curve as non-monotonic when it really is.  Our primary interest is in 

identifying practically significant non-monotonicities.  A lower significance level runs 

the risk of identifying statistically significant, but practically insignificant, non-

monotonicities.  Therefore, we feel that the increased risk of a type II error is justified.      

Up to this point, the NmPF has been tested only on curves.  However, the output 

of each fractional factorial experimental run will be a two-dimensional surface.  We need 

to know limiting NmPF parameter values for surfaces.  As described above, the argument 

to NmPF is the pair of vectors representing the projection of a slice of the response 

surface onto the x-z plane, where x is the Blue parameter variable, y is the Red parameter 

variable, and z is the vector containing the values of the given response surface slice.  In 

the discussion above, the Blue and Red parameter variables used were initial force levels.  

Red was fixed at 500, and the corresponding Blue initial force levels and response 

surface values were fed to the NmPF.  The NmPF then calculates the parameter values 

for that particular slice of the response surface.  The method for calculating the NmPF 

parameter values for a surface is exactly the same, except that all of the response surface 

slices corresponding to unique values of y are input to the NmPF one at a time and a 

cumulative total for each of the parameter values is computed.  The cumulative totals are 

then returned as NmPF parameter values for the surface.   

The same procedure used to develop upper bounds for the NmPF parameter 

values for curves is used to develop limiting values for the NmPF parameter values for 

surfaces.  However, only one Monte Carlo simulation is run.  The single run is for the 

worst-case monotonic surface—i.e., the horizontal plane z = 0.5.  Figure 5.11 shows the 

distributions of the NmPF parameter values for this worst-case surface.  Table 5.2 is a 

listing of the means, standard deviations and right tail quantiles for the NmPF parameter 

values for the worst-case surface.  Note that the estimated means of the surface values are 

equal to the curve value estimates, scaled by a factor of 349 (± 0.005 due to random 

variation).   Of particular interest is the fact that the NmPF parameter values for the worst 

case monotonic response surface indicate the tendency towards normality that is 

guaranteed by the Central Limit Theorem.  The 99.5% quantiles in Table 5.2 match the 

three standard deviation values also listed in Table 5.2.  Therefore, we claim that the 
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NmPF parameter values for surfaces are normally distributed as the number of points on 

the response surface grows large.  Certainly, 69451 points—the number of points on a 

response surface generated by the stochastic version of the Dewar model—are enough to 

satisfy the normality assumption.    

 

Figure 5.11. Histograms of NmPF Parameter Values For a Surface. 

These histograms were generated by a Monte Carlo simulation, using the NmPF to 
calculate parameter values for the stochastically perturbed surface, z = 0.5.  The 
simulation was run for 1000 iterations.  Each response surface generated during the 
fractional factorial experiment has the same number of points: 69,451.  These points are 
plotted over a 199 x 349 grid.  It takes NmPF approximately five minutes to calculate the 
NmPF parameter values for one of these surfaces.  The Monte Carlo simulation, used to 
generate Table 5.2, took approximately 5000 minutes or 3.47 days to complete. See Table 
5.2 for a listing of the right tail quantile estimates. 
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              µ     σ     µ+3σ 
NmP       592.4 36.88   703.04 
Jumps   33870.0 74.13 34092.39 
SJumps    100.5 10.25   131.25 
NmT      3048.0 80.34  3289.02 
Trends   8440.0 38.31  8554.93 
STrends   609.5 23.61   680.33 
 
          Surface Quantiles  

 
        90.0%   99.0%   99.5% 
NmP       641   680.5   694.6 
Jumps   33970 34040.0 34040.0  
SJumps    114   125.0   127.0 
NmT      3152  3231.0  3247.0 
Trends   8485  8529.0  8536.0  
STrends   640   662.0   666.0 
 

Table 5.2. NmPF Parameter Means, Standard Deviations and Quantiles For the 
Worst Case Monotonic Surface. 

 

E. ANALYSIS OF NMPF VALUES WITH RESPECT TO λ, POINT 
DENSITY, NUMBER OF REPLICATIONS AND TYPE OF RESPONSE 
SURFACE. 

A full factorial design experiment is conducted to confirm the observations 

mentioned above and to refine our understanding of the behavior of the NmPF values as 

the following factors change:  λ (z-transformation tuning parameter); the number of 

points in a given interval (point density); the number of replications used to generate each 

response curve point; or the shape of the response curve. The full factorial design 

experiment uses the following factors and levels:  

 
 Levels 

Factors 1 2 3 4 5 
Point Density 200 400

λ 1 6 
Replications 100 500

 

Shape of Response Curve f1 f2 f3 f4 f5 
 

Figure 5.12 shows the functions that determine the shape of the response curve used in 

the full factorial design.  Knowing the true shape underlying the response curve allows us 
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to draw conclusions about the behavior of the NmPF values obtained by stochastically 

perturbing the curves. For each run, the following algorithm is used: 

a.   is generated, where x is a vector of evenly spaced values between 

zero and one.  The number of elements in x, and f(x) are as prescribed by the 

experimental design. 

)(xfy =

b.   is generated for each curve.  This perturbs the 

original curve, generating the stochastic response curve. 

)),1,1000(( yrbinommeanyp =

c.  NmPF(x , yp, n, λ, thresh) is called.  The arguments are: n, the number of 

replications; λ, the tuning parameter for the z-value transformation described earlier; x 

and yp, the independent and dependent values of the response curve; thresh, the 

significance level in terms of standard deviations.  The thresh value is set at three for the 

reasons discussed in section VI.D. The NmPF parameter values are returned and stored.  

d.  Step (c) is repeated 1000 times for each design point.  The means of the NmPF 

parameter values for each design point are then returned.   

 
Figure 5.12. Known Response Curves Used in Full Factorial Design Experiment. 
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F. RESULTS OF FULL FACTORIAL DESIGN EXPERIMENT 

The experimental results, the ANOVA analysis, and calculated effects are listed 

in detail in Appendix B.  The following conclusions are drawn from the experiment’s 

results and the subsequent analysis: 

1.    ANOVA Results for NmP 

The values in Table 5.3 indicate that NmP is extremely sensitive to the value of λ.  

This makes sense.  If λ is small, say λ = 1, and the response curve has many insignificant 

jumps, then the sum of all the insignificant jumps can grow quite large as the number of 

insignificant jumps increases.  If λ is large, say λ = 6, then the effect of all the 

insignificant jumps is dramatically reduced.  Thus, the experimental results confirm our 

intuition and verify the expected behavior of λ.   NmP is also fairly sensitive to the 

number of points.  This is no surprise.  More points imply more opportunities for non-

monotonicities.  More non-monotonicities imply a larger NmP value.    The interaction 

between λ and Density is also straightforward and intuitive.  Low λ and high point 

density results in large NmP values; conversely, high λ and low point density results in 

low NmP values, exactly what is expected. 
                   Df Sum of Sq  Mean Sq  F Value     Pr(F)  
            fNames  4   223.819   55.955   45.678 0.0000000 
           Density  1  1023.471 1023.471  835.503 0.0000000 
                             Lambda  1  7316.173 7316.173 5972.501 0.0000000 
        SampleSize  1     0.117    0.117    0.095 0.7613839 
    fNames:Density  4     3.845    0.961    0.785 0.5506660 
     fNames:Lambda  4   128.536   32.134   26.232 0.0000004 
 fNames:SampleSize  4    41.022   10.255    8.372 0.0006365 
          Density:Lambda  1   891.953  891.953  728.139 0.0000000 
Density:SampleSize  1     2.205    2.205    1.800 0.1973829 
 Lambda:SampleSize  1     0.894    0.894    0.730 0.4048281 
         Residuals 17    20.825    1.225                    
               

Table 5.3. ANOVA Summary For the NmP Parameter. 
2.   ANOVA Results for Jumps (J) 

The values in Table 5.4 indicate that the J parameter is extremely sensitive to the 

number of points along the response curve.  This happens for the same reason as 

mentioned above for the NmP parameter. This extreme sensitivity should present no 

problem as long as the stochastic variables used in the model are fairly symmetric.  

Asymmetrically distributed stochastic variables might cause the value of J to be biased 
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either high or low, depending on the asymmetry of the distribution.  The stochastic 

version of the Dewar model uses only symmetric random variables.  

 
 Df Sum of Sq  Mean Sq  F Value     Pr(F)  

            fNames  4   1590.31   397.58   2379.0 0.0000000 
           Density  1  22127.62 22127.62 132404.2 0.0000000 
            Lambda  1      0.12     0.12      0.7 0.4150663 
        SampleSize  1      4.46     4.46     26.7 0.0000773 
    fNames:Density  4      7.59     1.90     11.4 0.0001134 
     fNames:Lambda  4      0.22     0.06      0.3 0.8507183 
 fNames:SampleSize  4    148.11    37.03    221.6 0.0000000 
    Density:Lambda  1      0.07     0.07      0.4 0.5392657 
Density:SampleSize  1      6.38     6.38     38.2 0.0000101 
 Lambda:SampleSize  1      0.05     0.05      0.3 0.5900005 
         Residuals 17      2.84     0.17                    
 

Table 5.4. ANOVA Summary For the J Parameter. 

The Jump parameter is also fairly sensitive to the shape of the curve.  Here is a list 

of the calculated effects for the five curves: 
Effect of Curve on J: 
1  5.03900 y = 0.5 
2 -8.87975 y = 1 – (1/2000)*x 
3  4.97275    y = (sin(x) + 2)/4 
4  5.31525 y = (sin(2x) + 2)/4 
5 -6.44725 y = (x-1)^3 + 1 

The first curve is the “worst case,” y = 0.5.  A positive value for the effect 

indicates that this horizontal, constant curve increased the value of J, on average, by five.  

The number 2 curve, a monotonic decreasing curve, reduced the value of J, on average, 

by almost nine.  The 3rd and 4th curves, the sin(x) curves, increased the value of Jumps, 

on average, by about five.  The 5th curve, the monotonic increasing curve , 

reduced the value of J, on average, by about six. These values verify that the horizontal 

line y = 0.5 represents the worst-case scenario when the true, underlying curve is 

monotonic.  They also emphasize the intuitive behavior of the J parameter. 

1)1( 3 +−= xy

3. ANOVA Results for Significant Jumps (SJ)   

Even though three of the factors in Table 5.5 have a statistically significant effect 

on the behavior of SJ, the F-values for the SJ parameter are orders of magnitude smaller 

than those for either J or NmP.  The conclusion to draw from this is that SJ is relatively 

unaffected by the factors in the experiment.  This is a good thing.  SJ should be affected 

only by the magnitude of non-monotonic jumps.  Clearly, the point density and the shape 
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of the curve will affect the number of jumps (more jumps imply a greater chance for 

significant jumps) and the magnitude of the jumps (a rapidly decreasing surface will have 

more significant jumps).  This explains the significance of point density and curve shape 

on SJ.  However, compared to the NmP and J parameters, the SJ parameter is relatively 

unaffected by the factors used in this experiment. 
  Df Sum of Sq   Mean Sq  F Value     Pr(F)  

            fNames  4   0.50899 0.1272475 57.48625 0.0000000 
           Density  1   0.10816 0.1081600 48.86314 0.0000022 
            Lambda  1   0.00225 0.0022500  1.01648 0.3274921 
        SampleSize  1   0.00729 0.0072900  3.29338 0.0872449 
    fNames:Density  4   0.06534 0.0163350  7.37962 0.0012296 
     fNames:Lambda  4   0.00305 0.0007625  0.34447 0.8441677 
 fNames:SampleSize  4   0.21991 0.0549775 24.83703 0.0000007 
    Density:Lambda  1   0.00064 0.0006400  0.28913 0.5977474 
Density:SampleSize  1   0.03364 0.0336400 15.19745 0.0011557 
 Lambda:SampleSize  1   0.00009 0.0000900  0.04066 0.8425906 
         Residuals 17   0.03763 0.0022135       
              

Table 5.5. ANOVA Summary For the SJ Parameter. 
 
4.   ANOVA Results for NmT  

NmT is the one NmPF value that is sensitive to all four factors: shape of the 

curve, point density, λ, and the number of replications used to generate each response 

curve point.  However, λ dominates the other three.  Because NmT is the sum of all non-

monotonic trends, it will be affected by λ more or less depending on the number of 

insignificant trends; more insignificant trends imply larger NmT value.  This explains the 

dominance of λ in Table 5.6.  
            Df Sum of Sq  Mean Sq  F Value     Pr(F
            fNames  4  3961.816  990.454  745.305 0.0000000 

)  

           Density  1   829.489  829.489  624.181 0.0000000 
                             Lambda  1  1644.121 1644.121 1237.182 0.0000000 
        SampleSize  1    98.820   98.820   74.361 0.0000001 
    fNames:Density  4     8.388    2.097    1.578 0.2254740 
     fNames:Lambda  4   109.118   27.279   20.527 0.0000025 
 fNames:SampleSize  4   550.328  137.582  103.529 0.0000000 
    Density:Lambda  1   305.761  305.761  230.082 0.0000000 
Density:SampleSize  1     5.022    5.022    3.779 0.0686411 
 Lambda:SampleSize  1    22.945   22.945   17.266 0.0006627 
         Residuals 17    22.592    1.329           
          

Table 5.6. ANOVA Summary For the NmT Parameter. 
 

Next to λ, as expected, the greatest effect on NmT is caused by the shape of the 

curve.  As the curve becomes more non-monotonic, the value of NmT increases.  The 

following are the calculated effects of the five curves used in the experiment. 
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Effect of Response Curve Shape on NmT: 
1  -3.143360 y = 0.5 
2 -10.172060 y = 1 – (1/2000)*x 
3   5.365765 y = (sin(x) + 2)/4 
4  16.653265 y = (sin(2x) + 2)/4 
5  -8.703610 y = (x-1)^3 + 1 

The negative numbers in the above list indicate that the value of NmT decreased, 

on average, by the amount shown.  Positive numbers indicate an average increase.  Note 

that all of the monotonic functions (1, 2, 5) have negative values, while all of the non-

monotonic functions (3, 4) have positive values.  This confirms that the value of NmT 

increases as the non-monotonicity of a curve increases.  Exactly the behavior required. 

5.   ANOVA Results for Trends (T) 

As Table 5.7 shows, T is affected almost solely by point density.  The relative 

magnitude of Density’s F-value implies that the number of points along the response 

curve has the greatest effect on the value of the T parameter.  In this, T behaves in almost 

the same manner as J.   
 Df Sum of Sq  Mean Sq  F Value     Pr(F)  

            fNames  4   124.859   31.215   60.650 0.0000000 
           Density  1  2004.773 2004.773 3895.254 0.0000000 
            Lambda  1     0.038    0.038    0.075 0.7879211 
                  SampleSize 1    40.280   40.280   78.265 0.0000001 
    fNames:Density  4    20.686    5.172   10.048 0.0002317 
     fNames:Lambda  4     0.075    0.019    0.036 0.9972132 
 fNames:SampleSize  4    22.076    5.519   10.723 0.0001591 
    Density:Lambda  1     0.011    0.011    0.021 0.8860570 
Density:SampleSize  1     4.706    4.706    9.144 0.0076552 
 Lambda:SampleSize  1     0.042    0.042    0.082 0.7779455 
         Residuals 17     8.749    0.515                
     

Table 5.7. ANOVA Summary For the T Parameter. 

One notable difference is that the effect of the shape of the curve on the value of 

the T parameter is exactly opposite to that of all the other parameters.  This can be seen in 

the following table, where the calculated effects of the curves on Trends is highlighted in 

red.  The calculated effects, of the curves, for all other parameters are positive. 
NmP: 
1  0.9709625 
2 -3.1095375 
3  1.4835000 
4  3.0615875 
5 -2.4065125 

Jumps: 
1  5.03900 
2 -8.87975 
3  4.97275 
4  5.31525 
5 -6.44725 

SJumps: 
1 -0.01825 
2 -0.12825 
3  0.03925 
4  0.19425 
5 -0.08700 

NmT: 
1  -3.143360 
2 -10.172060 
3   5.365765 
4  16.653265 
5  -8.703610 

Trends: 
1  0.20025 
2  2.49900 
3 -0.05475 
4 -3.02850 
5  0.38400 

STrends: 
1 -0.75850 
2 -1.88600 
3  1.61525 
4  2.60900 
5.-1.579 

The reason for this behavior is not immediately obvious.  As the shape of the 

surface becomes more non-monotonic, the number of insignificant trends tends to 

decrease, especially along point-sparse curves, due to the way the T parameter is 
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generated (for a complete description, refer to section V.B and Figure 5.3.). When the 

response curve is fairly ‘monotonic,’ there tend to be a lot of insignificant trends.  As the 

response curve grows more non-monotonic, these trends tend to become significant and 

longer; thus, there are fewer insignificant trends and fewer trends overall. For smooth, 

continuous, non-monotonic response curves, the value of the T parameter and the ST 

parameter approach a common value (refer to Figures 5.7 and 5.8).  For non-smooth, 

non-monotonic response curves this is not the case—i.e., the T parameter value continues 

to increase (see Figure 5.10). 

6.   ANOVA Results for Significant Trends (ST)  

As expected, ST is primarily affected by the shape of the response curve (see 

Table 5.8).  The number of points along the response curve has an effect on the number 

of non-monotonicities and, hence, the number of trends.  Therefore, ST is also affected 

by the point density.  ST is immune to the effect of λ, as it should be.  By design, λ 

affects only insignificant trends.   
 

 Df Sum of Sq  Mean Sq  F Value     Pr(F) 
            fNames  4  128.3507 32.08768 275.7747 0.0000000 

 

           Density  1   13.7358 13.73584 118.0514 0.0000000 
            Lambda  1    0.0000  0.00000   0.0000 1.0000000 
        SampleSize  1    0.1188  0.11881   1.0211 0.3264251 
    fNames:Density  4    6.0321  1.50803  12.9607 0.0000509 
     fNames:Lambda  4    0.0129  0.00323   0.0278 0.9983528 
 fNames:SampleSize  4    4.8321  1.20802  10.3822 0.0001920 
    Density:Lambda  1    0.0130  0.01296   0.1114 0.7426558 
Density:SampleSize  1    0.2402  0.24025   2.0648 0.1688842 
 Lambda:SampleSize  1    0.0036  0.00361   0.0310 0.8622640 
         Residuals 17    1.9780  0.11635                    
 

Table 5.8. ANOVA Summary For the ST Parameter. 

Next, the NmPF function is applied to actual data sets generated by the stochastic 

version of the Dewar Modal.  After that, we make some concluding remarks regarding 

the NmPF and appropriate settings for its use.  

G. APPLYING THE NMPF TO ACTUAL DATA 

Figures 5.12 – 5.16 illustrate the behavior of the NmPF values on actual data  

obtained from experimental runs of the stochastic version of the Dewar model.  Each 

figure displays two rows of graphs.  Each graph is a projection of the response surface 

onto either the Blue-z plane or the Red-z plane.  The top row in each figure shows 
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projections of the response surface where Blue values are held constant.  The bottom row 

shows projections of the response surface where Red values are held constant.  Figures 

5.12 and 5.15 show NmPF values generated with λ = 1.  Figures 5.14 and 5.16 show 

NmPF values generated with λ = 6. 

Compare the NmPF values in Figure 5.13, with  λ = 1, to the NmPF values in 

Figure 5.15, with λ = 6.   In the upper left corner of Figure 5.13, (Blue = 500), 

.  Compare this with the NmP value from the same graph in Figure 5.15, 

where .  There are 129 jumps in this slice of the response surface, only one 

of which is significant.  The large NmP value in Figure 5.13 is due to the large number of 

insignificant jumps, coupled with the fact that λ = 1.   In this case, the large NmP value is 

caused by the random noise of the stochastic variables used to generate the response 

curve.   Setting λ = 6, as in Figure 5.15, filters out this noise.  Consequently, the NmP 

value in Figure 5.15 is dramatically smaller.  The NmT value behaves in a similar 

manner, although the NmT parameter value in Figure 5.15 decreases only by a factor of 

about two.  This change is not quite as dramatic as the order of magnitude change 

exhibited by the NmP value as λ changes from one to six.   In both cases, increasing λ 

has the desired effect: it reduces the effect of the insignificant non-monotonicities.    

60=NmP

NmP 08.4=

Now, observe the graph in the lower left corner of Figure 5.13.  According to the 

NmPF parameters, there are seven jumps, four of which are significant, and two trends, 

both of which are significant.  The same graph in Figure 5.15 shows a decrease in the 

value of NmP as λ changes from one in Figure 5.13 to six in Figure 5.15.  However, the 

NmT value remains constant, as it should.    

Next, the middle graph, on the bottom row of Figures 5.12 and 5.14, displays 21 

jumps, one of which is significant, and three trends, two of which are significant.  Also 

notice that the non-monotonic jumps occur around 0.4 – 0.6, in the range where the 

variance is greatest.  The non-monotonic trends in the graph are very pronounced, 

visually.   

According to the 99.5% quantiles in Table 5.1, we would classify all the graphs in 

Figure 5.13, but only the two leftmost graphs in Figure 5.15, as significantly non-
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monotonic.  However, using the 90% quantile from Table 5.1, the lower middle graph in 

Figure 5.15 also would be classified as significantly non-monotonic.   

The bottom right graph is troublesome.  The visually pronounced dip in this graph 

seems to make it classifiable as significantly non-monotonic.  But the NmPF parameters 

imply that it is not.  There is one significant non-monotonic trend; however, the quantiles 

in Table 5.1 indicate that this significant non-monotonic trend could have happened by 

chance more than 10% of the time.  See the enlarged view of this curve in Figure 5.14.  It 

is important to note that one small, but statistically significant jump (or trend) in an 

otherwise ‘monotonic’ curve may not be caught.  This is an example of the type II error 

that can occur with our approach. 

The NmPF parameter values displayed in Figures 5.15 and 5.16 behave in a 

similar fashion.  However, these graphs demonstrate typical numbers seen when the 

response curve is extremely non-monotonic.  As expected, the NmPF parameter values 

reflect this extreme non-monotonicity. 

70 



 

0 1000 2000 3000

NmP: 60  J: 129  SJ: 1 

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Pr
ob

 R
ed

 W
in

s

Contour Blue =  500

 NmT: 53.5  T: 40  ST: 4

0 1000 2000 3000

NmP: 44.2  J: 119  SJ: 0 

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Pr
ob

 R
ed

 W
in

s

Contour Blue =  700

 NmT: 35.1  T: 29  ST: 1

0 1000 2000 3000

NmP: 35  J: 96  SJ: 0 

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Pr
ob

 R
ed

 W
in

s

Contour Blue =  900

 NmT: 28.2  T: 33  ST: 2

0 500 1000 1500 2000
NmP: 31  J: 7  SJ: 4 

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Pr
ob

 R
ed

 W
in

s

Contour Red =  500

 NmT: 33.6  T: 2  ST: 2

0 500 1000 1500 2000
NmP: 16  J: 21  SJ: 1 

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Pr
ob

 R
ed

 W
in

s

Contour Red =  900

 NmT: 17.3  T: 3  ST: 2

0 500 1000 1500 2000
NmP: 12.2  J: 30  SJ: 0 

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Pr
ob

 R
ed

 W
in

s

Contour Red =  1300

 NmT: 11.5  T: 9  ST: 1

Non-Monotonic Parameter Values

Number of Replications: 1000   Data set: nsawmi-2000-3500-0005   lambda: 1

Figure 5.13. Is the Response Curve Non-Monotonic or Not? 

In this set of graphs, λ = 1, where λ is a tuning parameter for the NmPF values that 
makes them more or less sensitive to the 3σ boundary.  Note the behavior of the response 
surface and how the NmPF parameter values reflect this behavior.  Compare these graphs 
with those in Figure 5.14.   
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Figure 5.14. A Close-up View of Figure 5.13. 

This Figure shows an enlarged view of the non-monotonic points of the bottom right 
graph in Figure 5.13. The non-monotonic trend is readily apparent.  The difference 
between the lowest and highest points on this trend is 0.125.  The z-value for this 
difference is 6.21.  Each of the points plotted in red is a non-monotonic point.
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Figure 5.15.  λ Reduces the Effect of Random Noise on the NmPF Values. 

In this set of graphs, λ = 6.   Note the behavior of the response surface and how the 
NmPF parameter values reflect this behavior.  Compare these graphs with those in Figure 
5.13.  According to the worst-case numbers from Figure 5.6, only the graph in the lower 
left corner of Figure 5.15 would be classified as significantly non-monotonic. 
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Figure 5.16. NmPF Parameter Values and Extreme Non-Monotonic Behavior.  

In this set of graphs, λ = 1.   Note the extremely non-monotonic behavior of these graphs 
and how the NmPF parameter values reflect this behavior.  Compare these graphs with 
those in Figure 5.17.  Note that, except for the graphs in the upper right corner, the NmP 
and NmT values do not change. This is caused by the fact that J = SJ and T = ST in seven 
out of the 12 cases.  Except for the graphs in the upper right corner, the difference in the 
NmP and NmT values as λ changes from one to six in the other five cases is lost due to 
the magnitude of the NmP and NmT parameter values.   
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Figure 5.17. The Effect of λ on NmPF Parameter Values and Extreme Non-monotonic 
Behavior.    

In this set of graphs, λ = 6.   Note the extreme non-monotonic behavior of these graphs 
and how the NmPF values reflect this behavior.  Since almost all of the non-
monotonicities are significant, the NmP and NmT values change very little, if at all, when 
λ is changed from one to six.  This is another sign that the NmPF function is working 
properly.  Compare the NmPF parameter values in these graphs with those in Figures 
5.12 – 5.15. 
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H. CONCLUDING REMARKS REGARDING THE NMPF 

Based on all of the above—the discussion, the experiment, and the application of 

the NmPF to actual data—we are confident that the NmPF parameter values will 

effectively classify the response surfaces generated by the stochastic version of the 

Dewar model.  To summarize the salient points developed thus far: 

1.  The points on the response surfaces generated by the stochastic version of the 

Dewar model are independent and normally distributed; so is any single difference 

between any pair of points on the surface.  However, multiple successive differences are 

not independently distributed.  To measure the non-monotonicity of these surfaces, 

multiple successive comparisons are necessary.  The analytical derivation of the 

distribution of multiple successive comparisons being too difficult, the distribution and 

error rates are obtained numerically by Monte Carlo Simulation and the development of a 

Non-monotonic Parameter Function (NmPF).  

2.  The NmPF is evaluated using a full factorial experimental design.  Each of the 

NmPF parameters behaves consistently and in an intuitive manner.  The main findings of 

the factorial experiment are: 

 a.  As the number of points across the response surface increases, the  

NmPF parameter values become approximately normally distributed.  This assumption is 

further supported by the fact that the NmPF parameters, Jumps, SJumps, Trends and 

STrends are all discrete counting variables and are naturally inclined towards a Poisson 

distribution.  However, as the mean of a Poisson distribution grows large, the Poisson 

distribution may also be approximated by the Normal distribution. This is exactly the 

behavior the NmPF parameter values exhibit for response surfaces. 

 b.  The effect of insignificant non-monotonicities on the NmPF parameter 

values, due only to the randomness added to the model by the stochastic parameters can 

be dramatically reduced by λ, the NmPF tuning parameter.  This parameter makes the 

NmPF parameters more sensitive to significant non-monotonicities and is set to six for 

future use.   
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3.  A standardized, non-monotonic deviation from the overall trend of the 

response surface, whose absolute magnitude is greater than three, is considered 

“significant.”  The use of 3σ rather than 2σ increases the possibility of a type II error.   A 

lower significance level, while reducing the probability of a type II error, increases the 

chance of identifying statistically significant, but practically insignificant, non-

monotonicities.  The increased risk of a type II error is justified in order to increase the 

probability that significant non-monotonicities are practically significant. 

4.  Two tables are generated which provide upper bounds for the right tails of the 

NmPF parameter distributions.  The first table contains means, standard deviations and 

quantiles for response curves; the second contains the same information for response 

surfaces.  The means and standard deviations of the two tables are identical to within 

random variation and a scale factor of 349.  Table 5.2 provides a quantifiable basis for 

discriminating between surfaces that contain insignificant non-monotonicities and those 

that contain significant non-monotonicities.   

The next section covers the results of the fractional factorial experiment and 

conclusions drawn from it with regard to the effect of stochastic perturbations on the non-

monotonicity exhibited by the Dewar model. 
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VI. FRACTIONAL FACTORIAL EXPERIMENT RESULTS 

This chapter analyzes the results of the fractional factorial experiment and 

calculates the effects of making the parameters stochastic.  These results are tested by 

applying the information obtained from the analysis to the model and making a final 

series of runs to compare the analytical and empirical results. 

A.   ANALYSIS 

According to the design developed in Chapter IV, 64 design points are run 

through the model.  This requires 64*1000*69451, or approximately 4.5 billion runs.  

The NmPF is run on each of the 64 response surfaces generated by the 64 experimental 

design points.  The result is a 64 by six matrix, containing the six NmPF parameter values 

for each of the 64 response surfaces.  Table C1 in Appendix C is a listing of the design 

matrix and the results of the experiment.    

1.  Correlation Among the Responses and the Method of Analysis 

According to the discussion in Chapter V, we expect the response variables to be 

correlated.  Multivariate analysis of variance (MANOVA) is a statistical method for 

analyzing multiple responses.  “If the responses are independent, then it is sensible to just 

perform univariate analysis.  However, if the responses are correlated, then MANOVA 

can be more informative than the univariate analyses as well as less repetitive” (S-Plus 

2000, 1999).  The only difference between the multivariate and the univariate analysis is 

that the variance of the calculated effects will be larger using MANOVA than when using 

ANOVA.  MANOVA requires that the response variables satisfy the assumptions of 

independence and normality.  As discussed in Chapter V, the NmPF parameter values are 

approximately normal when the NmPF is applied to the response surfaces generated by 

the stochastic version of the Dewar model.  However, as we also noted in Chapter V, the 

NmPF parameters Jumps, SJumps, Trends and STrends are counting variables.  Hence, 

they are likely distributed as Poisson random variates.  Thus, a ‘square root’ 

transformation of the response variables may be required in order to ensure that the 

residuals are more normal.  Additionally, the NmPF parameter values calculated for one 

response surface are independent of the NmPF parameter values calculated for any other 
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response surface.  Thus, the response variables are approximately independent and 

identically distributed normal random variates.  This follows from the fact that, when the 

mean is large, a Poisson random variable has approximately a normal distribution 

(Devore 1995, p. 237). 

2. Graphical Diagnostics: Confirming Correlation 

Figure 6.1 is a pairs plot of the response variable matrix.  By inspection, it is 

obvious there is positive correlation between Jumps and Trends, as expected.  Also 

obvious by inspection is the tight clustering of points that appears in each of the paired 

plots.  A quick check confirms that this clustering is caused by the four orders of  

magnitude difference in the NmP and NmT parameter values as the factor level of 

Attrition Coefficients (AC) changes from ‘not stochastic’ to ‘stochastic.’  These clusters 

correspond to runs 33 through 64, the runs where the AC factor level is ‘stochastic.’      
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Figure 6.1. Pairs Plot:  Response Variables From the Fractional Factorial Experiment. 
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           NmP  Jumps SJumps    NmT Trends Strends 
NmP      1.000 -0.541  0.331  0.884 -0.528   0.041 
Jumps           1.000 -0.841 -0.629  0.989  -0.313 
SJumps                 1.000  0.510 -0.816   0.600 
NmT                           1.000 -0.608   0.181 
Trends                               1.000  -0.207 
Strends                                      1.000 

 

        Table 6.1. Response Variable Correlation Matrix. 

The correlation matrix in Table 6.1 confirms the visual impression of correlation between 
Jumps and Trends.  It also shows that there is additional correlation in the data that is not 
so obvious in Figure 6.1.  The positive and negative correlations in Table 6.1 whose 
magnitudes are greater than 0.5 are highlighted in blue and red, respectively.   
 

3. Describing the Landscape of the Stochastic Response Surface 

The left and right graphs in Figure 6.2 are representative of the response surfaces 

from runs 1−32 and 33−64, respectively.  The black and white regions in each graph 

represent the initial force levels that result in a Blue and Red win, respectively.  The 

colored region between the black and white regions indicates, according to the color bar, 

an increasing probability of a Red win.  Clearly, the intermediate color regionwhere 

the probability that Red wins is greater than zero and less than oneis much larger in the 

right graph than in the left graph.  The nearly homogeneous coloring of this region in the 

right graph indicates a nearly constant probability, except at the edges, adjacent to the 

black and white regions.   

The NmPF parameter values displayed below Figure 6.2 correspond to the 

response surfaces of the left and right graphs, respectively.  There is strong negative 

correlation between Jumps and Trends and the other four NmPF parameter values.  So, 

while the number of Jumps and Trends increase, the values of NmP, NmT, SJumps and 

STrends all decrease, indicating a reduction in the non-monotonicity of the response 

surface.  This general trend corresponds to the change in the AC factor from ‘not 

stochastic’ (left graph) to ‘stochastic’ (right graph).    
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Figure 6.2. Explaining Correlation. 

                     NmP  Jumps SJumps       NmT Trends STrends 

Design Point 3  10028930   1822   1681  56021760    733     730  
Design Point 49      808  13487    140      2852   4059     560 
 
4. Explaining the Negative Correlation 

The cause of the negative correlation, while not immediately obvious, is easily 

explained.  In Figure 6.2, observe that the region between the force ratio withdrawal 

thresholds (FRWDT in the graph legends) contains all of the non-monotonicity in both 

stochastic response surfaces.  In this region of the graph on the left, the non-monotonicity 

is extremealmost all of the Jumps and Trends are significant.  However, in the right 

graph, the non-monotonic region is very mildwith relatively small SJumps and 

STrends parameter values.  The parameter values Jumps and Trends have both increased 

by an order of magnitude,  while the SJumps parameter value has decreased by an order 

of magnitude and STrends by almost 30 percent.  All of the insignificant jumps and 

trends in the right graph are just the noise associated with the randomness added by the 

stochastic perturbations.  In the right graph, the number of significant jumps and trends 

(SJumps, STrends) has decreased and, consequently, so have the values of NmP and 

NmT.   All of the above comments are relative between the two graphs.  However, in 

Chapter V, we generated the empirical distribution of the NmPF parameters.  These 
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empirical distributions can be used to classify the stochastic surfaces as ‘monotonic’ or 

not.  

5. Classifying a Stochastic Response Surface 

The necessary quantiles can be found in Table 5.2.  Clearly, the left graph in 

Figure 6.2 would be classified as extremely non-monotonic.  The graph on the right 

would be classified as non-monotonic, but only barely so, and only because the NmP and 

Jumps values are a little too large.  Additionally, as the cross-sections in the graphs in 

Figure 6.3 show, the trend of the response surface of design point 49 is dramatically 

smoother compared to the response surface of design point 3.  These graphs demonstrate, 

again, the negative correlation between the NmPF parameter values, explained above. 

 

Figure 6.3. Explaining Negative Correlation Among NmPF Parameter Values. 
The number of Jumps and Trends has increased from run 3 to run 49, but the number of SJumps 
and STrends has decreased.  NmP and NmT are designed to be quite sensitive to SJumps and 
STrends, respectively.  Therefore, there is strong positive correlation between NmP and Sjumps, 
as well as between NmT and STrends.  An extreme non-monotonic stochastic surface tends to 
have many significant jumps and trends, whereas a ‘monotonic’ stochastic surface tends to have 
few significant jumps and trends and a much larger number of insignificant jumps and trends.  
Also, according to Table 5.1, the cross-section of the response surface from run 49 is 
‘monotonic’, but the one from run 3 is not. 
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6. Fitting the Model 

Due to the strong correlation (positive and negative) among the NmPF parameter 

values, MANOVA seems to be the most suitable method for the analysis of the fractional 

factorial experiment.  However, we omit the NmP and NmT response variables from the 

model, as the SJumps and STrends parameters provide the same information.   Since we 

are interested in not only the main effects, but also first order interactions, a linear model 

with interactions is fitted.  As previously mentioned, transforming the response variables 

Jumps, SJumps, Trends and STrends by taking their square roots may improve the 

normal behavior of the residuals in the fitted model.  However, two models are fitted for 

comparison.  The first model is fitted using the untransformed response variables, and the 

second is fitted using the square roots of the response variables.  The diagnostic plots in 

Figure 6.4 indicate that the square root transformation is a more appropriate model.  In 

Table 6.2, we have listed only those factors and interactions whose p-value is less than 

0.01.   The most obvious observation is that the attrition coefficients (AC) are the most 

significant parameters.  

             Df Approx F num Df den Df     Pr(>F)     

FRRT    1  58.01      4     23   1.105e-11  
PIFRT    1   31.72      4     23   4.675e-09  
RBS    1   22.70      4     23   1.051e-07  
AC     1  566.00      4     23   2.2e-16  
PIFWDT   1   23.80      4     23   6.860e-08  
RBA    1    5.74      4     23   0.002347  
FRRT:AC    34.59      4     23   2.021e-09      1
PIFRT:AC   1    31.38      4     23   5.182e-09  
PIFRT:PIFWDT  1    4.47      4     23   0.008114  
RBD:FRWDT   1     6.08      4     23   0.001721  
RBS:AC   1    21.64      4     23   1.612e-07  
RBS:FRWDT   1    22.93      4     23 9.592e-08  
Residuals  26 

 RSE:    Jumps   SJumps     Trends  STrends 
   6.39        3.20       3.71       3.31    
 

Table 6.2. Summary of MANOVA Linear Model with Interactions  

Table 6.2 summarizes the Linear model with interactions, fitted with the square root of 
the response variables.  Factors and two-factor interactions have a significant effect on 
NmPF parameter values.  Attrition coefficients are the most significant factors in the 
model.  All decision thresholds and reinforcement block size, have a significant effect, 
either as single factors or as part of some interaction.  The number of reinforcement 
blocks (RBA) also has a significant effect, but it is much less pronounced.   
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Figure 6.4. Checking the MANOVA Model For Normal Residuals 

Both the top and bottom rows display diagnostic plots of the residuals of the Linear 
MANOVA model with interactions.  The graphs in the top row correspond to the model 
fitted using the untransformed response variables.  The bottom row corresponds to the 
model fitted using the square roots of the response variables.  Note that the graphs in the 
bottom row indicate more normal residuals.  Although the lower right graph still shows 
some heteroscedasticity, it is much less pronounced than in the upper right graph. 
 

7. Calculating the Effect of the Factors on the Response Variables 

Effects of the factors on the response variables can be calculated independent of 

the method used to analyze their statistical significance. Hence, both multivariate and 

univariate methods for calculating these effects give the same results.   The results differ 

only in the standard error of the effects.  As can be seen from the diagnostic plots in 

Figure 6.4, the linear model with interactions, using the square roots of the  response 

variables, results in residuals with less variance than the linear model, with interactions, 

using the untransformed response variables.  Additionally, the residuals plotted against 
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the fitted values shows non-constant variance in both models. Hence, the constant 

variance assumption is questionable.  However, the ‘Fitted vs. Residuals’ graph of the 

transformed data shows a much greater degree of homoscedasticity.  Thus, we conclude 

that the model fitted with the square roots of the response variables is the better model.  

The calculated effects of the various factors on the NmPF parameter values are listed in 

Table 6.3 and displayed in Figure 6.5. 

 
            NmP Jumps SJumps      NmT Trends STrends  
  IF   544982    -5     28  2134200      2      10   
  FRRT -2549775   184     -1 -1710384      5    -100 
 PIFRT -3206752  1181    -71 -3242005    339       8 
     
   RBS  -331458   131    -28 -1460231    -53     -69 

RBD  200441    45    -16   -85166      8      -3 

    AC -3835864  3120   -463 -6589506    913    -110 
 
PIFWDT -3268968   987    -43 -3147961    289      11 
FRWDT  -268141  -114     16 -1271939    -31      13 

   RBA  1888221   359     23  1415461     96       9 
 

Table 6.3. Calculated Effects of the Stochastic Parameters. 
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Figure 6.5. Effects of Stochastic Parameters on Mean Value of NmP. 

 
A “1” and “-1” indicate that the parameter value was set to ‘stochastic’ and ‘non-
stochastic,’ respectively.  Except for IF, RBD and RBA, setting model parameters to 
‘stochastic’ reduces the value of NmP.    
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Each value in Table 6.3 is the effect of the model parameter (row name) on the 

mean value of the NmPF parameter (column name) when the model parameter is set to 

‘stochastic.’  The effects of the factors on the mean value of the NmP parameter can be 

seen graphically in Figure 6.5.  In this figure, the horizontal line running through the 

center of the graph represents the mean value (3,836,603) of the NmP parameter value for 

all 64 response surfaces.  The vertical lines represent the effect of each factor on the 

mean value of NmP.  For example, in Table 6.3, the effect on the mean value of NmP of 

setting AC to ‘stochastic’ is –3,835,864.  Adding this value to the mean (3,836,603) gives 

739.  Thus, the estimated effect on the mean value of NmP of making AC stochastic is to 

reduce it by -3,835,864.  Continuing in this manner, it is possible to calculate the 

cumulative effect of all the factors on the mean value of the NmP parameter.  This same 

procedure can be applied to each of the NmPF parameters in turn.  Ideally, we want to set 

each of the factors at a level that will result in the greatest reduction in non-monotonicity 

without violating our common sense view of reality.  

8.  A Simple Integer Program to Minimize Non-monotonicity 

In order to optimize or find the greatest overall possible reduction in all of the 

NmPF parameter valuessmaller NmP and NmT parameter values imply a reduction in 

the non-monotonicity of the response surfacethe following simple integer program 

(SIP) is solved: 

Indices 
i    model parameter {IF, FRRT, …, RBA} 
j    NmPF parameter {NmP, …, STrends} 
Data 
Ei,j    The calculated effect of the ith model parameter on the jth  

 NmPF parameter value 
Integer Decision Variable 
 Zi      Integer decision variable equal to -1 if the ith model  

 parameter is ‘not stochastic’ otherwise equal to 1. 
Constraints 
Zi ≤ 1    Force the ith model parameter to be either stochastic, or           
Zi ≥ -1  not stochastic 
Zi integer 
Objective Function 

∑
ji

iji ZE
,

, min  
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The solution to the SIP is that IF, RBD, and RBA should be set to ‘not stochastic’ and the 

rest set to ‘stochastic.’   Does this solution make sense?  Certainly, the solution is subject 

to criticism.   

Which parameters are made stochastic should pass the ‘common sense’ test.  For 

example, it makes sense to make attrition coefficients stochastic.  Attrition during the 

course of a battle is composed of many inherently random elements, such as detection, 

engagement, etc.  There are periods where attrition is much more intense, and other 

periods where a lull in the battle results in almost no attrition.  Likewise, stochastic 

decision thresholds make sense.  An example of this randomness is the uncertainty a 

commander faces when trying to decide when to send in his reserves, or, if discretion is 

the better part of valor, when to withdraw.  However, initial force levels are not, 

normally, uncertain quantities.  So, leaving these parameters as deterministic variables 

makes sense.    

Common sense tells us that the time it takes reinforcements to arrive (RBD) ought 

to be random.  The SIP solution is to make this parameter deterministic.  Table 6.2 

indicates that RBD is statistically significant only in an interaction with a withdrawal 

threshold.  However, its value, relative to the other factors, makes it practically 

insignificant.  Additionally, from Table 6.3, setting this parameter to a ‘stochastic’ level 

increases the values of NmP, Jumps and Trends, while, at the same time, decreases the 

values of SJumps, NmT and STrends.  There does not appear to be any simple 

explanation for this rather complicated effect.  Thus, whether or not to set this parameter 

to ‘stochastic’ seems to be a rather subjective call.  As we are trying to minimize non-

monotonicity, we use the solution of the SIP and set this parameter to its ‘not stochastic’ 

level.  Similar arguments apply to the remaining parameters.   There is potential for 

endless debate between proponents for both sides of such arguments.  However, this is 

missing the point.  The real point is that the results of the fractional factorial experiment, 

conjoined with the knowledge that experience and common sense provide, allow us to 

decide which parameters should be made stochastic in a logical, rational manner, rather 

than merely guessing in some haphazard way.  Clearly, defensible arguments can be 

made for several distinct configurations of the model parameters.  To illustrate this point, 

the results of the SIP are applied to the model.   
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 Table 6.4 shows the effects of the model parameters on the NmPF parameter 

values when the solution of the integer program is applied.  Rows highlighted in red 

correspond to factors set at ‘not stochastic.’  The cumulative estimated effects of the 

factors on each NmPF parameter value is calculated and listed in the last row of Table 6.4 

(highlighted in blue).  Even though some might be inclined to use some sort of weighting 

scheme when calculating the cumulative effects, we use an additive model since the 

Linear model used to determine which of these factors is significant is an additive model. 

             NmP Jumps SJumps       NmT Trends STrends  

    IF   -544982     5    -28  -2134200     -2     -10   
  FRRT  -2549775   184     -1  -1710384      5    -100 
 PIFRT  -3206752  1181    -71  -3242005    339       8 
   RBD   -200441   -45     16     85166     -8       3   
   RBS   -331458   131    -28  -1460231    -53     -69 
    AC  -3835864  3120   -463  -6589506    913    -110 
 FRWDT   -268141  -114     16  -1271939    -31      13 
PIFWDT  -3268968   987    -43  -3147961    289      11 
   RBA  -1888221  -359    -23  -1415461    -96      -9   
   SUM -16094602  5090   -625 -20886521   1356    -263 
 

Table 6.4. Optimized Effects of Model Parameters on NmPF Parameters. 
 
9. Testing the Analysis 

To test the analysis, the Dewar model parameters are set according to the levels 

indicated in Table 6.4.  Thirty response surfaces are generated with the model parameters 

set at these levels.  The NmPF parameter values are calculated for each of the resulting 

surfaces.  Then, the column means and standard deviations of the thirty-by-six NmPF 

parameter matrix are calculated.   These statistics are listed in Table 6.5.  Figure 6.6 

shows the original Dewar model response surface and a response surface chosen 

randomly from the 30 generated by the empirical test.  The NmPF parameter values for 

the original Dewar model response surface are listed below the figure.  Below those 

values, the mean values from Table 6.5 are listed (highlighted in red). 
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       Mean   SE 
NmP   679.0 30.0 
J   13238.4 72.1 
SJ    119.4  7.5 
NmT  2402.6 37.0 
Tr   3984.8 35.0 
STr   457.7 10.5 

  

Table 6.5. Mean Values of the NmPF Parameter Values that Result from the SIP 
Solution 

 

 
Figure 6.6. Comparing Original Dewar Model With Stochastic Model. 

The stochastic response surface (left graph) is more amenable to interpretation than the 
deterministic response surface (right graph).  However, the number of model runs needed 
to generate a stochastic surface may still be prohibitive for the larger combat models. 

 

The following NmPF parameter values correspond to the left and right graphs, 

respectively, in Figure 6.6.  According to the quantiles in Table 5.2, the graph on the right 

is ‘monotonic.’    

Original Dewar Model Response Surface NmPF Parameter Values 
     NmP Jumps SJumps     NmT Trends STrends 
15164400   480    480 8434200    267     267  
 
Optimal Stochastic Model Mean Response Surface NmPF Parameter Values 
     NmP Jumps SJumps     NmT Trends STrends 

           679 13238    119    2403   3985     458 

The left graph in Figure 6.6 is the original Dewar model response surface, and the 

other is a randomly chosen response surface from the final set of 30 stochastic runs.  
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Each of these 30 stochastic response surfaces appears identical to the naked eye; the only 

way to distinguish between them is to calculate the NmPF parameter values.  There are 

four lines superimposed on each graph.  These are the force ratio reinforcement (FRRT) 

and withdrawal thresholds (FRWDT) for each side.  In the left graph, the black and white 

regions represent the initial force levels that result in a Red or Blue win, respectively. 

This color scheme is reversed in the graph on the right, where the black and white regions 

correspond to Blue and Red wins, respectively.  In the graph on the right, the black and 

white regions are both bounded by the withdrawal thresholds.  The colored 

regionbetween the black and white regions in this graphrepresents an increasing 

probability of a Red win, according to the color bar to the right of the graph. 

Those combinations of stochastic parameters having the greatest reducing effect 

on the non-monotonicity of the model also cause the entire region between the bounding 

thresholds to change.  As can be seen in Figure 6.6, a large part of the region that was 

once clearly dominated by Blue wins is now a region of uncertainty.  The same is true for 

regions previously dominated by Red wins.  The right-hand graph in Figure 6.6 appeals 

to our intuition—i.e., the outcome remains uncertain until one side withdraws or loses the 

battle.   The most significant point to make here is that the stochastic response surface 

(right graph) is much more amenable to interpretation than the deterministic response 

surface (left graph). 

This is just an example of the way the results of the fractional factorial experiment 

can be used.  As mentioned previously, there are other logically defensible 

configurations.  However, not all configurations are reasonable, and some are better than 

others.  As an example, this is a listing of the factor levels used in the ninth and 54th 

design  points of the fractional factorial experiment and their NmPF parameter values:   

      IF FRRT PIFRT RBD RBS AC FRWDT PIFWDT RBA         
9th Design Point    1   -1    -1   1  -1 -1    -1     -1   1  

 
     NmP Jumps SJumps       NmT Trends STrends 
87020260  1320   1108 103013100    681     663 
 
      IF FRRT PIFRT RBD RBS AC FRWDT PIFWDT RBA        

54th Design Point  -1    1     1  -1   1  1     1      1  -1  
      
     NmP Jumps SJumps       NmT Trends STrends 
     719 13182    132      2460   3928     475 
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The ninth design point has parameters assigned exactly opposite to the solution of the 

SIP.  The 54th design point corresponds, exactly, to the SIP solution.  It is obvious that the 

SIP solution configuration is better than the configuration corresponding to the ninth 

design point.     

Clearly, the use of stochastic parameters requires numerous additional runs to 

generate a useable stochastic response surface.  Remember that each point in a stochastic 

surface generated in this study is the mean of 1000 replications (see Chapter II for a 

complete description).  The added burden of additional runs may make the use of 

stochastic parameters, computationally, too expensive for larger combat models.  

However, when feasible, stochastic modeling can significantly smooth non-monotonicity, 

making the trend of the response more amenable to interpretation.   

B. FINAL COMMENTS ON THE RESULTS OF THE FRACTIONAL 
FACTORIAL EXPERIMENT  

The conclusions it is possible to draw from this chapter are too numerous to list.  

Because the main goal of this chapter was to determine the effect of stochastic modeling 

on the Dewar model’s response surface, we will limit our conclusions to this topic.   

The information obtained from the analysis of the fractional factorial 

experiment’s results, conjoined with experience and common sense, provide a rational 

basis for deciding which model parameters to make stochastic and permit us to estimate 

their effects.   

As discussed and illustrated above, attrition coefficients have the single greatest 

effect upon the non-monotonicity of the stochastic response surface of the Dewar model.   

The next most significant effects come from the reinforcement thresholds, followed by 

reinforcement block size, and then interactions involving pairs of factors.  One of the 

withdrawal thresholds (FRWDT) does not have a significant effect by itself, but does 

have a significant effect when interacting with the reinforcement block size (RBS) 

parameter.  It may be useful to unravel some of these interactions, but as that is not the 

focus of this thesis, we leave it to future study of this fascinating model. 
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Once the level of the model parameters has been decided—i.e., should the 

parameter be stochastic or not?—the model can be run and the response surface measured 

to determine its NmPF values.  These values can be used in conjunction with Table 5.2 to 

classify the stochastic response surface as ‘monotonic’ or not.  ‘Monotonic’ surfaces can 

be interpreted with more confidence than can ‘non-monotonic’ surfaces in terms of what 

the trend of the surface implies.   

Next, we make some concluding remarks and suggest some ideas for further 

research. 
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VII. CONCLUSIONS   

A. PRIMARY FINDINGS 

All three goals of the study were attained, with significant findings in two of 

them.   The three major objectives of this thesis were:   

a.  To systematically explore the Dewar model for additional non-monotonic 

behavior. 

b.  To determine the effect of stochastic modeling on the non-monotonic behavior 

of the Dewar model response surface.   

c.  To develop a method for measuring non-monotonicity in the response surface 

generated by the model. 

The overall goal was to discover if the trend of the response surface could be made more 

amenable to interpretation without destroying the chaos inherent in the model. 

Latin Hypercube Sampling, an extension of Latin Square sampling into multi-

dimensional spaces, was used to thoroughly search the 18 dimensions of the Dewar 

model.  This search discovered non-monotonicity in not only five additional two- 

dimensional subspaces, but also in one other measure of effectiveness (MOE):  ‘length of 

battle.’  There are 152 other two-dimensional subspaces of the Dewar model that were 

not searched.  It is possible that additional non-monotonic behavior could be found in 

these subspaces, as well.  

Given the pervasiveness of non-monotonicity throughout the Dewar model, we 

looked at stochastic modeling as a way to smooth the response surface in the presence of 

the underlying chaotic battle trace.  Much of the literature reviewed for this paper 

indicated that stochastic modeling would be a useful way to deal with non-monotonic 

behavior of not only the simple combat model studied by Dewar et al., but also other, 

more complex models.  Thus, a fractional factorial design experiment was run to 

determine the effect of stochastic modeling on the trend of the response surface of the 

Dewar model.  The results were dramatic.  Stochastic perturbation can both reduce and 
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exacerbate the non-monotonic behavior of the response surface.  The model parameters 

having the greatest effect on the reduction of the non-monotonic behavior in the model 

were the attrition coefficients.  When the attrition coefficient parameters were made 

stochastic, the average reduction in non-monotonicity was approximately three orders of 

magnitude.  It is also important to note that some of the response surfaces generated 

during the fractional factorial experiment resulted in an increase in non-monotonicity of 

about two orders of magnitude.   In fact, the response surface exhibiting the most extreme 

non-monotonicity was the design point that had the model parameters set to levels 

exactly opposite those suggested by the solution to the simple integer program in Chapter 

VI. 

We developed, tested and used the Non-monotonic Parameter Function (NmPF) 

to measure the reduction in non-monotonicity of the response surface.  This function 

calculates six measures of the non-monotonicity or roughness of the stochastic response 

surfaces generated by the Dewar model.  The function has two user-definable parameters 

that allow the sensitivity of the function to the response curve to be adjusted.   Thus, if 

the three standard deviation threshold we used in this thesis seems too strict a constraint, 

it is easily changed.    

Caveat actor et cavendo tutus; the Dewar model is a relatively small model when 

compared to the larger, more complex models currently in use throughout DoD.    

Counting explorations, testing, Latin Hypercube Sampling, fractional factorial 

experiments, and final empirical testing of analytical results, approximately ten billion 

model runs were made during the course of this study.  All of these runs are but an 

inconsequential fraction of the number of runs it would take to thoroughly explore every 

corner of the 18-dimensional Dewar model.  Clearly, conducting this method of analysis 

with the large DoD models is impossible.   However, the results of this study may suggest 

useful methods for dealing with non-monotonic output in larger, more complex models.  

The bottom line is that non-monotonicity may be more pervasive in combat 

models than previously suspected.  Stochastic modeling can be a viable method for 

smoothing non-monotonic response surfaces.  However, stochastic modeling must be 

done carefully.  When it is, the non-monotonic behavior of the model can be dramatically 
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reduced, thereby making the trend of the response surface more useful for comparative 

analyses.  Since non-monotonic behavior no longer needs to be ignored or ‘fixed,’ the 

realism of the model can be retained, while, at the same time, the trends of the response 

surface can be used to support decisions between competing alternatives.  Better models 

imply better decisions, which, in turn, imply more economical and efficient use of time, 

money and other resources—and, perhaps, another soldier, sailor, airman or Marine gets 

to enjoy his pension. 

B. SUGGESTED FOLLOW-ON RESEARCH 

There are many subtle and not so subtle findings that have not been fully explored 

in this thesis.  The Dewar Model, while relatively small, has some very interesting 

properties.  Its chaotic battle trace and the pervasive non-monotonic behavior of the 

response surface in many of its subspaces are but two.  There is still much information 

that can be gleaned from this seemingly simple, relatively small dimensional model that 

may have far-reaching implications for larger, more complex models and simulations.  

The following list contains recommendations for further study and research: 

1.   Several subspaces were found to have non-monotonic output with regard to 

‘length of battle,’ an often useful measure of effectiveness.   The Dewar model executed 

200,000 iterations; the stochastic version used in this thesis executed 20,000 iterations.  

The larger models do not execute nearly this many.  What happens to the non-

monotonicity of the response surface when very few iterations are executed?  If the non-

monotonicity increases, larger models may have even worse problems than this study 

suggests. 

2.   Using Latin Hypercube Sampling, we searched only the symmetric two-

dimensional subspaces of the Dewar model—e.g., Red and Blue initial force level 

subspace.  There are 153 two-dimensional subspaces.  We suspect that many of the non-

symmetric two-dimensional subspaces also contain significant non-monotonic response 

surfaces.   Why stop at two dimensions?  The computer used in this study was a Pentium 

III, 600 MHz, with 256 Mb of RAM.  All told, approximately ten billion model runs were 

made during this study.  Larger, more powerful computers could breeze through that 

many runs in a day.  Three-dimensional and higher studies would be useful in helping 
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analysts better understand the intricacies of interactions between some of the basic 

processes in many large combat models.  The Dewar model could be considered a type of 

“distillation” like those being studied in Project Albert at the Marine Corps Combat 

Development Command. (Horne, 2001).  It contains some of the same processes present 

in larger models currently used by DoD, such as Vector In Command (VIC), a U.S. Army 

combat model.  We believe further exploration of the Dewar model will continue to 

provide useful insights.   

3.  Tsai and Ellenbogen studied the question of how to find bounds on regions of 

non-monotonicity.  After viewing hundreds of response surfaces in the many two-

dimensional subspaces of the Dewar model, we have the impression that, often, the non-

monotonicity is not only bounded by decision thresholds, but is also often limited in 

extent to regions close to these boundaries.  Further research in this area would be useful. 

4.  The main goal of this thesis was to determine the effect of stochastic modeling 

on the response surface of the Dewar model.  Only two random distributions with fixed 

standard deviations were used.  Other distributions could have been used that may have 

brought to light other pertinent information as to the behavior of the model.  A systematic 

exploration of the effect of various distributions on the response surface would doubtless 

yield many useful results. 

 5.  Finally, the Dewar model used Lanchester Square Law coupled difference 

equations to model the attrition process.  There are many other attrition calculation 

mechanisms that could have been used.  Do other attrition processes also result in chaotic 

battle traces and non-monotonic response surfaces? 
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APPENDIX A. SPLUS CODE FOR THE NMPF 

This appendix lists the SPlus code for the NmPF function.  It is usable, as is, in 

the R language, as well.  It is easily translated into C, Java or other computing languages, 

as it does not rely on any special functionality of SPlus / R.  Translating this code into 

another language will improve the speed of execution. 
function(x, y, reps, lambda = 6, thresh = 3){ 
########################################################################
#Usage:  NmPF2(x, y, reps, lambda=6, thresh=3) 
#             
#This function calculates six values that attempt to describe the  
#non-monotonicity or roughness of a response curve.  It does this by 
#determining the overall trend of the response curve using the sign of 
#the simple linear regression slope coefficient. Suppose this 
#coefficient is positive.  Then successive values along the response 
#curve that fall below their predecessors are considered non-monotonic 
#deviations from the overall trend of the response curve.  The 
#magnitude of the difference between a non-monotonic deviation and its 
#immediate predecessor is calculated. This difference is standardized 
#and a zvalue is calculated by the subfunction 'fz'.  This zvalue is 
#transformed by the subfunction 'fd'.    
########################################################################
#Arguments: 
# x      - a vector of x values 
# y      - a vector of response values, each value is assumed to  
#     be the mean of a stochastic modeling process. These means 
#      are assumed to be normally distributed. 
#     reps   - the number of replications used to generate the y values 
#     lambda - a tuning parameter that makes the calculated values more  
#              or less sensitive to the last argument, 'thresh' 
########################################################################
#Return values: 
# NmP     - The total sum of all transformed zvalues. 
#     Jumps   - The number of non-monotonic deviations from the overall  
#      trend of the response curve. 
# SJumps  - The number of non-monotonic deviations whose magnitude  
#      is greater than 'thresh.' 
# NmT   - Two or more successive non-monotonicities is considered  
#      a trend.  A zvalue for the difference between the  
#               extreme values of this trend is calculated and 
#      transformed as described above. NmT returns the sum of 
#       the transformed values of all these trends.  
#   Trends  - The number of trends found by the function.  
# STrends - Number trends with magnitude greater than 'thresh.' 
########################################################################
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#'fd' transforms the zvalues, where d = z - 3. 
fd <- function(d, lambda, thresh){ 
 ifelse(d <= 0, thresh * exp(lambda * d), thresh + d) 
} 
 
#'fz' calculates the standardized 'z' value.  The formula is based  
#on the assumption that the points used in the calculation are the  
#means of 'reps' Bernoulli trials. 1e-009 is a fudge factor so 
#formula won’t explode if the two points are zero and one. 
fz <- function(p, reps){ 
   (abs(p[2]) * sqrt(reps))/ 
    sqrt(abs(p[1]*(1-p[1])+(p[1]+p[2])*(1-p[1]-p[2]))+1e-009) 
} 
 
#Instantiate variables used to count non-monotonicities 
z <- NULL 
trend <- NULL 
 
#Calculate the slope coefficient of the simple linear  
#regression of y on x.   
regCoe <- lm(y ~ x)$coe[2] 
 
#The in
i <- 1 

dex used to keep track of which point we're looking at. 

 
#A counter 
jumps <- 0 

to keep track of non-monotonic deviations 

 
#While loop is used because we don't know when we'll bump into 
#a trend or how long it will 
while(i < (length(y) - 1)) { 

last. 

 
 #'j' is
 j <- i 

 used to keep track of trends 

 
 #If the overall trend is increasing and the next point 
 #is non-monotonic 
 if((regCoe > 0) & (y[i + 1] - y[i] < 0)) { 
 
  #maxJumpz is biggest non-monotonic jump found  
  #thus far along a trend 
  maxJumpz <- 0 
 
  #Counts the number of trends found along the response  

#curve 
 trendCount <- 0 

  
  #While we're tracking a trend we need a variable to  

#look at successive points 
  singleJump <- 0 
   

 #Since the curve is increasing and trend is   
#non-monotonic, need to keep track of  
#monotonic trends. If this reverse trend gets big 
$enough, stop tracking the non-monotonic trend. 
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  revTrendzTotal <- 0 
   

 #While loop used since we don't know when the non- 
#monotonic trend will stop.  We keep tracking the  
#trend as long as successive points are non-monotonic 
#with respect to the beginning of the non-monotonic  
#trend and there are more points on the response curve  
#and the sum of monotonic jumps is less than the  
#significance threshold, 'thresh.' 

  while((y[j + 1] - y[i] < 0) & (j < length(y)) &  
    (revTrendzTotal < thresh)){ 
  
   #Calculate the zvalue of the difference between  

#the start of the trend and the current point. 
   multiJumpz <- fz(c(y[i], y[j + 1] - y[i]), reps) 
     

#Calculate the difference between the current  
#point and the last point. 

   singleJump <- y[j + 1] - y[j] 
 

   #If the current point is biggest, save it. 
   if(multiJumpz > maxJumpz) { 
    maxJumpz <- multiJumpz 
   } 
    

 #If the current point is non-monotonic with  
#respect to its immediate predecessor, count it  
#as a non-monotonic jump and calculate its  
#zvalue.  Then store 

   if(singleJump < 0) { 
the value. 

    jumps <- jumps + 1 
    z <- c(z,fz(c(y[j],y[j+1]-y[j]),reps)) 
   } 
 
   #If the current point is monotonic with respect  

#to its immediate predecessor, then calculate  
#its zvalue and add it to the other  
#monotonic jumps 

   if(singleJump > 0) { 
     revTrendzTotal <- revTrendzTotal + 

   fz(c(y[j], singleJump), reps) 
   } 
 
   next point. #Go to the 

  j <- j + 1  
 
   #Keep track of how many times trend loop used. 

  
   trendCount <- trendCount + 1 
  } ### End While Trend Loop ### 
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#If the trend loop was used more than once,  
#then it was a trend. So save the magnitude of the  
#trend. 

  if(trendCount > 1) { 
      trend <- c(trend, maxJumpz) 
  } 
   

#Start looking for the next non-monotonicity where   
#tracking stopped on the last trend. 

  i <- j 
 
 }  ### End IF Increasing ### 
  
 #This block mirrors the one above, except that the response  
 #curve is decreasing. 
 else if((regCoe < 0) & (y[i + 1] - y[i] > 0)) { 
   

maxJumpz <- 0 
  trendCount <- 0 
  singleJump <- 0 
  revTrendzTotal <- 0 
 
  while((y[j + 1] - y[i] > 0) & (j < length(y)) &  
   (revTrendzTotal < thresh)){ 
    

multiJumpz <- fz(c(y[i], y[j + 1] - y[i]), reps) 
 
 

  singleJump <- y[j + 1] - y[j] 

   if(multiJumpz > maxJumpz) { 
    
   } 

maxJumpz <- multiJumpz 

    
   if(singleJump > 0) { 
    jumps <- jumps + 1 
    z <- c(z,fz(c(y[j],y[j+1]-y[j]),reps)) 
   } 
    
   if(singleJump < 0) { 
      revTrendzTotal <- revTrendzTotal + 
      fz(c(y[j], singleJump), reps) 
   } 
    

j <- j + 1 
   trendCount <- trendCount + 1 
 
 

 }  ### End While Trend Loop ### 

  if(trendCount > 1) { 
   trend <- c(trend, maxJumpz) 
  } 
   

 
 } ### End IF Decreasing ### 

i <- j 
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#If neither of the conditions is met the point is monotone, 
#put a 
else { 

zero in the z value vector. And go to the next point. 

   z <- c(z, 0) 
   i <- i + 1 
 } 
} ### End While Loop: Response Points Remaining  ### 
 
#Finished looking at all the points along the response  
#curve.  If any zvalues found calculate their 'fd'  
#transformation and save ea
if(length(z[z > 0]) > 0) { 

ch of these values in the 'nmp' vector. 

 nmp <- apply(as.matrix(z[z>0]- thresh),1,fd,lambda,thresh) 
} 
 
#If there were no non-monotonicities set 'nmp' equal to zero. 
else { 

nmp <- 0 
} 
 
#Do the same with the trends found, if any. 
if(length(trend[trend > 0]) > 0) { 
   nmt<-apply(as.matrix(trend[trend>0]-thresh),1,fd,lambda,thresh) 
} 
else { 
 nmt <- 0 
} 
 
#Now let the user know what was found. 
result <- signif(c(sum(nmp), jumps, sum(nmp > thresh), 
    sum(nmt), sum(nmt > 0), sum(nmt > thresh)), 3) 
 
names(result) <- c("NmP", "J", "SJ", "NmT", "T", "ST") 
 
return(result) 
 

} ### End of Function ### 
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APPENDIX B. NMPF EXPERIMENT RESULTS AND ANALYSIS   

Table B.1 is a listing of the full factorial experiment conducted on the NmPF 

parameter function in Chapter V.  For a complete description of the experiment and the 

analysis of this data, see Chapter V.E –F. 

A. RESULTS OF EXPERIMENT   
     fNames Density Lambda SampleSize     NmP     J   SJ     NmT Trends STrends  
dp 1      1     100      1        100 20.0500 46.48 0.09 16.2400  12.28    0.95 
dp 2      1     100      1        500 20.1800 47.58 0.15 15.9100  12.44    0.88 
dp 3      1     100      6        100  1.0590 46.98 0.21  4.8810  12.18    1.05 
dp 4      1     100      6        500  0.7140 48.10 0.11  3.9090  12.32    0.71 
dp 5      1     200      1        100 40.9800 93.90 0.41 32.7500  24.43    2.19 
dp 6      1     200      1        500 40.8700 96.79 0.24 31.8700  24.58    1.62 
dp 7      1     200      6        100  1.8740 93.05 0.32 10.5600  24.47    2.28 
dp 8      1     200      6        500  1.5310 96.82 0.24  8.2070  23.99    1.42 
dp 9      2     100      1        100 15.0400 37.38 0.07 10.1600  14.52    0.16 
dp 10     2     100      1        500 10.7800 30.95 0.01  5.3370  10.12    0.00 
dp 11     2     100      6        100  0.4158 38.06 0.07  0.7651  14.59    0.14 
dp 12     2     100      6        500  0.1467 30.90 0.02  0.2873  10.35    0.06 
dp 13     2     200      1        100 35.7200 82.70 0.25 26.3400  28.62    0.64 
dp 14     2     200      1        500 30.0400 77.43 0.08 19.6000  29.19    0.16 
dp 15     2     200      6        100  1.5750 83.17 0.25  4.1240  28.78    0.70 
dp 16     2     200      6        500  0.8965 77.76 0.14  1.4840  28.91    0.22 
dp 17     3     100      1        100 20.3100 45.83 0.20 19.5200  12.48    2.75 
dp 18     3     100      1        500 22.7100 48.65 0.30 25.4900  10.19    3.43 
dp 19     3     100      6        100  0.9253 46.92 0.14 11.4000  12.59    2.63 
dp 20     3     100      6        500  1.4800 47.35 0.29 20.5300   9.92    3.28 
dp 21     3     200      1        100 40.8800 93.40 0.28 35.5000  25.02    3.45 
dp 22     3     200      1        500 41.1600 96.53 0.32 39.4700  24.61    5.46 
dp 23     3     200      6        100  1.7220 93.73 0.32 14.8800  25.30    3.38 
dp 24     3     200      6        500  2.1710 96.76 0.38 25.6100  24.54    5.71 
dp 25     4     100      1        100 21.4600 46.74 0.25 25.0800  10.33    3.67 
dp 26     4     100      1        500 27.4300 48.66 0.62 40.4100   5.95    3.33 
dp 27     4     100      6        100  1.4950 46.96 0.24 20.7100  10.34    3.71 
dp 28     4     100      6        500  3.6620 48.71 0.72 39.1300   5.68    3.28 
dp 29     4     200      1        100 40.8000 93.60 0.29 39.5400  24.59    5.59 
dp 30     4     200      1        500 44.0300 97.16 0.48 50.7500  19.67    6.34 
dp 31     4     200      6        100  2.0620 93.11 0.37 24.5700  24.40    5.60 
dp 32     4     200      6        500  3.0440 96.97 0.50 42.5100  19.90    6.52 
dp 33     5     100      1        100 15.7400 39.34 0.10 11.1900  12.43    0.37 
dp 34     5     100      1        500 13.1000 33.98 0.05  8.4310   9.97    0.24 
dp 35     5     100      6        100  0.4767 39.18 0.08  2.0970  12.29    0.40 
dp 36     5     100      6        500  0.3845 34.32 0.03  1.1310  10.16    0.16 
dp 37     5     200      1        100 35.6600 84.81 0.26 26.4900  26.68    1.05 
dp 38     5     200      1        500 32.2700 80.48 0.19 21.8300  25.24    0.64 
dp 39     5     200      6        100  1.5610 84.81 0.32  5.4520  26.47    1.12 
dp 40     5     200      6        500  1.0460 80.89 0.19  3.2240  24.92    0.55 
 

Table B.1. NmPF Full Factorial Experiment Results 
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APPENDIX C. FRACTIONAL FACTORIAL RESULTS 

Table C.1 is a complete listing of the fractional factorial 26, resolution V experimental design—the 

first nine columns of Table C.1—and the results of the experiment—columns ten through15 of Table C.1.  

A complete discussion and analysis of this table can be found in Chapter VI.  
      IF FRRT PIFRT RBD RBS AC FRWDT PIFWDT RBA           NmP Jumps SJumps           NmT Trends STrends   
dp 0  -1   -1    -1  -1  -1 -1    -1     -1  -1 15164400.0000   480    480   8434200.000    267     267  
dp 1   1   -1    -1  -1  -1 -1     1      1   1  3017869.0000  6880   1665  13018980.000   2774    1563  
dp 2  -1    1    -1  -1  -1 -1     1      1   1  1010321.0000  7880   1007   6010837.000   2637     576  
dp 3   1    1    -1  -1  -1 -1    -1     -1  -1 10028930.0000  1822   1681  56021760.000    733     730  
dp 4  -1   -1     1  -1  -1 -1     1      1   1  1010533.0000 10444    846   7012324.000   3295     922  
dp 5   1   -1     1  -1  -1 -1    -1     -1  -1  2016741.0000  6551   1470   8016766.000   2513    1462  
dp 6  -1    1     1  -1  -1 -1    -1     -1  -1  1009322.0000  7694    861   6009837.000   2473     574  
dp 7   1    1     1  -1  -1 -1     1      1   1  1008273.0000 10922    859   6009507.000   3275     613  
dp 8  -1   -1    -1   1  -1 –1     1      1  -1  1016433.0000  5714   1544   7017475.000   2180    1409  
dp 9   1   -1    -1   1  -1 -1    -1     -1   1 87020260.0000  1320   1108 103013100.000    681     663 
dp 10 -1    1    -1   1  -1 -1    -1     -1   1  5016461.0000  3666   1606   4016334.000   1140     788 
dp 11  1    1    -1   1  -1 -1     1      1  -1  1008988.0000  6778    898   6009677.000   2083     568 
dp 12 -1   -1     1   1  -1 -1    -1     -1   1  2012357.0000  8696   1162   8013410.000   3155    1356 
dp 13  1   -1     1   1  -1 -1     1      1  -1  1009524.0000 10664    816   7011104.000   3382     989 
dp 14 -1    1     1   1  -1 -1     1      1  -1  1007367.0000 11004    801   6008481.000   3375     618 
dp 15  1    1     1   1  -1 -1    -1     -1   1  1008341.0000  9389    951   6009317.000   2871     566 
dp 16 -1   -1    -1  -1   1 -1     1     -1   1 66014760.0000  2889   1364  45021670.000    904     621 
dp 17  1   -1    -1  -1   1 -1    -1      1  -1  1009887.0000  6358    956   7011335.000   1812     806 
dp 18 -1    1    -1  -1   1 -1    -1      1  -1  1007628.0000  6575    943   6008410.000   1808     440 
dp 19  1    1    -1  -1   1 -1     1     -1   1  9016314.0000  4005   1811  18020350.000    855     632 
dp 20 -1   -1     1  -1   1 -1    -1      1  -1  1007739.0000 10808    777   7009046.000   3176     648 
dp 21  1   -1     1  -1   1 -1     1     -1   1  2008964.0000  9201    871   8010078.000   2662     719 
dp 22 -1    1     1  -1   1 -1     1     -1   1  1006858.0000  9355    866   6008076.000   2623     451 
dp 23  1    1     1  -1   1 -1    -1      1  -1  1006764.0000 11123    885   6007815.000   3279     480 
dp 24 -1   -1    -1   1   1 -1    -1      1   1  1009495.0000  9147    905   7010982.000   2657     738 
dp 25  1   -1    -1   1   1 -1     1     -1  -1 18015820.0000  1733   1184  16015140.000    629     578 
dp 26 -1    1    -1   1   1 -1     1     -1  -1  5010516.0000  1870   1049   6011090.000    481     347 
dp 27  1    1    -1   1   1 -1    -1      1   1  1007513.0000  9186    946   6008616.000   2624     454 
dp 28 -1   -1     1   1   1 -1     1     -1  -1  2009301.0000  6716    905   7011287.000   1913     898 
dp 29  1   -1     1   1   1 -1    -1      1   1  1007535.0000 11086    747   7008822.000   3115     561 
dp 30 -1    1     1   1   1 -1    -1      1   1  1006569.0000 11314    861   6007959.000   3103     488 
dp 31  1    1     1   1   1 -1     1     -1  -1  1007154.0000  6927    896   6007857.000   1986     405 
dp 32 -1   -1    -1  -1  -1  1    -1      1   1      758.6826 13459    129      2755.830   4056     529 
dp 33  1   -1    -1  -1  -1  1     1     -1  -1      784.5177 13209    136      2798.076   3986     537 
dp 34 -1    1    -1  -1  -1  1     1     -1  -1      684.6479 13242    118      2471.311   3996     475 
dp 35  1    1    -1  -1  -1  1    -1      1   1      699.8102 13544    121      2398.754   4067     451 
dp 36 -1   -1     1  -1  -1  1     1     -1  -1      779.0201 13178    136      2735.437   3985     529 
dp 37  1   -1     1  -1  -1  1    -1      1   1      793.2902 13514    138      2774.600   4073     526 
dp 38 -1    1     1  -1  -1  1    -1      1   1      723.8387 13571    127      2479.108   4075     468 
dp 39  1    1     1  -1  -1  1     1     -1  -1      682.2578 13194    121      2437.831   3988     459 
dp 40 -1   -1    -1   1  -1  1     1     -1   1      801.8395 13199    132      2835.400   3978     548 
dp 41  1   -1    -1   1  -1  1    -1      1  -1      748.1937 13461    124      2704.865   4105     518 
dp 42 -1    1    -1   1  -1  1    -1      1  -1      692.7105 13541    123      2395.594   4105     452 
dp 43  1    1    -1   1  -1  1     1     -1   1      707.0958 13265    116      2511.863   4008     474 
dp 44 -1   -1     1   1  -1  1    -1      1  -1      801.7554 13511    138      2783.130   4075     527 
d
 
p 45  1   -1     1   1  -1  1     1     -1   1      766.0407 13224    126      2732.650   3982     513 

Table C.1. Results of Fractional Factorial Experiment
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      IF FRRT PIFRT RBD RBS AC FRWDT PIFWDT RBA           NmP Jumps SJumps           NmT Trends STrends   
dp 46 -1    1     1   1  -1  1     1     -1   1      671.8752 13283    114      2427.797   3988     461 
dp 47  1    1     1   1  -1  1    -1      1  -1      725.5913 13542    128      2506.256   4059     480 
dp 48 -1   -1    -1  -1   1  1     1      1  -1      744.4172 13129    124      2702.400   3986     522 
dp 49  1   -1    -1  -1   1  1    -1     -1   1      807.8496 13487    140      2851.660   4059     560 
dp 50 -1    1    -1  -1   1  1    -1     -1   1      707.7737 13546    121      2516.887   4090     489 
dp 51  1    1    -1  -1   1  1     1      1  -1      688.4596 13205    115      2362.304   3982     449 
dp 52 -1   -1     1  -1   1  1    -1     -1   1      798.5561 13498    135      2789.250   4045     534 
dp 53  1   -1     1  -1   1  1     1      1  -1      788.4349 13101    140      2725.360   3942     521 
dp 54 -1    1     1  -1   1  1     1      1  -1      718.8082 13182    132      2460.356   3928     475 
dp 55  1    1     1  -1   1  1    -1     -1   1      717.0561 13552    127      2505.151   4058     480 
dp 56 -1   -1    -1   1   1  1    -1     -1  -1      758.9594 13569    128      2762.940   4081     522 
dp 57  1   -1    -1   1   1  1     1      1   1      784.6353 13213    139      2715.700   3965     524 
dp 58 -1    1    -1   1   1  1     1      1   1      692.1646 13279    128      2426.387   3974     470 
dp 59  1    1    -1   1   1  1    -1     -1  -1      683.8092 13597    115      2445.109   4102     461 
dp 60 -1   -1     1   1   1  1     1      1   1      787.9933 13201    137      2676.150   3971     499 
dp 61  1   -1     1   1   1  1    -1     -1  -1      756.4480 13521    124      2689.220   4110     504 
dp 62 -1    1     1   1   1  1    -1     -1  -1      661.1131 13561    114      2435.611   4077     459 
dp 63  1    1     1   1   1  1     1      1   1      705.5060 13298    121      2463.570   3970     477 

 
Table C.1 (Cont’d). Results of Fractional Factorial Experiment 
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